
 

Detection of Visual Code Markers in Camera-Phone Images 
 

 

Prabhu Balasubramanian 

Stanford University 

Department of Electrical Engineering 

prabhub@stanford.edu 

 

 

Allen Huang 

Stanford University 

Department of Electrical Engineering 

ahuang06@stanford.edu 

 

Abstract 
 

We describe the algorithm design and 

implementation of our submission for the EE368 final 

project, which involves detection of visual code 

markers in camera-phone images. We describe our 

approach and results, as well as the challenges faced 

during the development of our algorithm. For the 

reader’s interest, we also include a brief account of 

the algorithmic possibilities which we explored but 

did not ultimately employ.  

 

 

1. Introduction 
 

In this project, we were charged with the task of 

locating and reading ‘visual code markers’ in 

cameraphone images. These markers are 11x11 

arrays in which each element is either black or white. 

Some of these elements are part of distinguishing 

features which identify the pattern as a valid marker; 

these features include fixed guide bars and fixed 

corner elements. 83 of the 121 elements in the array 

represent binary-coded data (where a black element is 

a 1 and a white element is a 0). 

Additional information regarding the 

specifications and parameters of the project can be 

obtained at the EE368 course website, 

 http://www.stanford.edu/class/ee368/project.html. 

This report describes the algorithm design and 

implementation which we used to solve the problem 

of detection and reading of visual code markers. It 

also outlines the results we achieved with the training 

image set and mentions key challenges and thoughts 

for future exploration if we were to refine this 

algorithm to make it even more robust. 

 

2. Algorithm 
 

To solve the given problem, we employed a 

number of standard image processing techniques, all 

implemented in MATLAB, making heavy use of the 

capabilities of MATLAB’s Image Processing 

Toolbox, in addition to the software’s standard 

matrix processing functionality. On the whole, our 

algorithm is strongly biased towards the use of 

morphological techniques, such as dilation, erosion, 

and region labeling, although the final reading of bits 

happens by processing the original (non-binarized) 

image. 

Furthermore, the algorithm we used is best 

described as a hybrid method which employs both 

top-down and bottom-up approaches. In particular, 

our processing of the input image begins by taking a 

macroscopic view of the image in which we 

eliminate large segments of the image which we 

know cannot be related to visual code markers. After 

a sufficient number of image regions have been 

eliminated from candidacy by this step, we approach 

the image from the other direction, characterizing the 

small features and looking for regions which could be 

the guide bars or corner elements of markers. 

Confirming the nature of these small regions and 

their spatial relationships with each other allows us to 

conclusively identify markers and proceed with 

reading them. 

 

2.1. Image preparation 
 

Our first step is to convert the input image to 

grayscale and employ morphological techniques for 

edge detection. In the first place, this step reduces the 

image to its essential features. Moreover, because the 

visual code markers should contain particularly 

strong edges (since transitions are, roughly speaking, 

from black to white), edge detection tends to 

highlight the regions containing markers (among 

other candidate regions). Edge detection takes place 

using the gray-level morphological erosion of the 

grayscale image. By using the erosion, we prevent 

nearby regions from merging, which would lead to 

shapes that could not be processed. This allows us to 

then binarize the image by thresholding. We thereby 

eliminate regions which are “not edgy enough” – all 

pixels which do not meet or exceed a certain 

brightness level (with respect to the overall mean of 



the image) are zeroed out. This thresholding level is 

taken to be a standard deviation about the mean in the 

image. By adapting the threshold level to each image, 

we can compensate for differences in the original 

illumination of the photograph. We subsequently 

perform morphological operations on this newly 

binarized image; opening the image eliminates small 

1-regions, and closing it solidifies the remaining 

regions. 

 

2.2. Region classification 
 

Having eliminated all but relatively large 

contiguous regions from our binarized image, we 

then proceed to determine which of these regions 

could be parts of visual code markers. In particular, 

we use region labeling to distinguish among all the 

regions in the image and then iterate through them, 

noting the geometric properties of each region. After 

zeroing out regions which are either too big or not 

solid enough to be marker elements, we group the 

remaining regions according to their major-to-minor-

axis ratios; some regions are candidate square 

elements at the corners of the markers, and some 

regions are candidate rectangular elements to serve as 

horizontal or vertical guide bars. 

 

2.3. Region evaluation 
 

We now test the regions which are candidates to 

be guide bars in potential markers. Our approach is to 

look at each region and see if it has a corresponding 

short bar region near it such that it could be a vertical 

guide bar; this is achieved by determining the 

orientation (along the major axis) of each bar and 

looking ‘above’ and ‘below’ it for another bar that is 

approximately perpendicular (allowing for variation 

in this angle due to perspective skew). 
If we have found two bars in the correct 

configuration, we use the width of these bars and 

their perpendicular distance from each other to 

calculate an element size for the potential marker that 

would be framed by these guide bars. We then use 

this estimated element size to calculate an expected 

location for the upper right fixed corner element of 

the marker. Verifying the presence of an 

approximately square region at this location adds 

further robustness to the marker identification 

scheme. 

 

2.4. Locating the top left element 
 

Having identified the two guide bars and one of the 

three fixed corner elements, the algorithm now goes 

about locating the top left fixed corner element and 

determining its position (since this is one of the 

outputs expected from the algorithm). This is a more 

difficult task than it sounds because of the 

perspective skew that is inevitably introduced into 

source images of this type. Our approach is to use the 

“side length” of the square marker (calculated using 

the distance between the horizontal guide bar and the 

upper right corner element) and an approximate skew 

factor (calculated based on the angle between the two 

guide bars) to find a candidate for the position of the 

top left element. Then, we look for the nearest 

regions to this point (within a relatively small radius) 

and choose the one which is the leftmost and topmost 

of the set; it is not adequate to simply choose the 

closest region, because the skew could cause 

misidentification of elements. In order to improve 

performance, the guide bars are searched in order of 

size, and when three markers have been found, the 

algorithm will return the result for that image. 

Finding the centroid of the chosen region completes 

the first phase of the algorithm – locating markers by 

their top left elements. 
 

2.5. Reading bits 
 

Reading the bits in an individual marker was a 

much more difficult task than first imagined. We 

soon realized that due to perspective skews, the 

markers were not only non-rectangular, they were not 

parallelograms. In order to help compensate for the 

skew, we use an algorithm similar to that which we 

used to find the upper-left corner to find the upper-

right and left-bottom corners. The upper-right corner 

is located by finding the nearest square dark spot in 

the major axis of the right-hand marker. The upper-

left corner is found by moving a distance away based 

on the width calculated in the previous section.   

Using the corner points of the marker, the 

slanting on each of the four sides can be found, and 

each bit-step can compensate for any slant by moving 

in both the x and y directions.  The slanting is applied 

linearly so that in the middle, skew is calculated by 

taking the average of the slant on either side.  By 

stepping across the matrix, each bit value is found 

from a 3-by-3 region surrounding the pixel in 

question. 

 

3. Results with training images 
 

Overall, we found that our algorithm performed 

excellently when applied to the training image set. It 

was able to accurately detect and locate every one of 

the 23 markers in the 12 images, and on most images, 

it read the bits out with very few errors. 



For all twelve of the training images, no false 

positives or repeated origins were found, and at least 

90% of the bits were correctly determined in 20 of 

the 23 marker images given. In 13 of the images, all 

83 bits were correctly read. The most difficult images 

for our algorithm were image #5 and image #12, 

which both had strong perspective skews in the 

image.  Logically, the images that were most poorly 

interpreted were the markers that suffered the most 

from skew. 

Execution time for the images was variable 

depending on the number of features to examine in 

each image. Images for which the algorithm quickly 

found three markers were able to finish as quickly as 

7.7 seconds, while an image with only one marker 

took as long as 28 seconds. All of the images were 

read within 30 seconds. Our composite score was 

1722, over 90% of the 1909 points possible. 

Figures 1-3 (see right) illustrate a typical training 

image (image #4) and the results of our algorithm 

when given this image as an input. 

As mentioned, the greatest challenge faced by 

the algorithm was presented by training image #5, 

which contained three markers pasted on an 

extremely feature-heavy coupon sheet. Although we 

were able to locate all three markers, we had 

difficulty reading the bits correctly, largely due to the 

extremely perspective skew of the image, especially 

in the center and right code markers, which suffered 

from the steepest skew angles found anywhere in the 

training set. Throughout our time working on 

developing this algorithm, we found ourselves 

making tradeoffs between performing well on image 

#5 and sacrificing good performance on other, less 

challenging images. We attempted to rectify this 

problem by applying the concept of perspective 

projection, which was discussed in Professor Girod’s 

EE368 lecture, but we were unable to correctly 

implement the necessary transformation before the 

project deadline. Thus, a particularly interesting area 

of exploration which we would pursue, given 

additional time, is correction of the perspective skew 

of the various images, which we believe would 

dramatically improve the bit-level accuracy of our 

algorithm (which is already remarkably accurate, 

given the quality of these images). 

 

4. Other avenues we explored 
 

Before settling on our final algorithmic approach for 

this project, we spent a great deal of time exploring 

other possible methodologies. Though we ultimately 

rejected these, the time spent in understanding them 

was extremely valuable, so it is worthwhile to 

describe these methods in outline here. 

 

Figure 1. Training image #4, which contains one 

visual code marker. 

 

Figure 2. A dimmed version of training image #4 

with our candidates for the upper-right and upper-left 
fixed corner elements highlighted. 

 

Figure 3. Plot of matrix of bits from marker in 

training image #4 as generated by our algorithm. 

 

 

 



4.1. Color and luminance-based segmentation 
 

We considered using color and luminance as 

criteria by which to exclude sections of the image 

from being potential markers. For example, any 

region deemed “too colorful” (i.e., having color 

components which were not close enough to being 

equal on average) could be eliminated, since the 

markers are supposed to contain (within a certain 

level of tolerance) only black and white. Similarly, 

any region which was “too gray” (i.e., intensity not 

extreme enough) could be eliminated, since the 

markers should only contain extremes of intensity. 

However, we found that these approaches were 

ultimately not very productive; because of the 

extreme noisiness and blurriness of the images, as 

well as the wide variation of light levels in the 

photos, we found that we had to be extremely 

conservative in applying these algorithms, to the 

point that it was more efficient to simply omit them. 

 

4.2. Searching for entire markers 
 

Initially, our mentality was that the best 

approach was to find the region containing each 

marker in its entirety. We thought that it would be 

easiest to find features of markers (and distinguish 

them from other, similar features throughout the 

image) if we “narrowed down” the image to a 

specific region of interest first. Consequently, most of 

our initial efforts were focused on looking for entire 

markers in an image, rather than smaller features 

such as guide bars or fixed corner elements. 

 

4.3. Haralick corner detection 
 

One of our earliest ideas for finding features that 

would distinguish markers from the rest of the image 

was density of corners; it seemed (and indeed, was) 

quite reasonable that a section of the image with so 

many small square elements would naturally have a 

higher incidence of corners than other, ordinary 

sections of the image. We further believed that this 

approach would be more productive than simply 

searching for edges, because corners were more 

unique to markers than were edges. Our idea was to 

pick out regions with high corner densities and 

perform various morphological operations (erosion, 

dilation, opening, and closing) with different 

structuring elements, along with some template 

matching techniques (discussed below), to find 

regions which enclosed each marker. What we 

ultimately discovered, however, was that this 

approach was extremely sensitive to the parameters 

we gave to the various algorithms involved, and it 

was extremely difficult to ‘tweak’ it in a manner that 

robustly avoided false positives as well as false 

negatives. We also found that we had great difficulty 

consistently arriving at the correct sizes for our 

marker regions. These problems led us to abandon 

this approach as well. 

 

4.4. Template matching 
 

We considered using template matching as a way 

of measuring “squareness,” which we thought to be 

one of the most fundamental properties of a marker. 

The idea was that most markers should be 

approximately half white and half black, and they 

should have a distinctly square shape. So, we tried 

filtering images by a 50x50 square matrix of all 1’s. 

Peak-finding then yielded the regions most likely to 

contain markers; we originally planned to use these 

peaks as a way of selecting among a set of candidate 

regions, found by morphological methods, which 

might represent entire markers. We ultimately 

rejected this approach because it depended too much 

on “niceness” of the marker images and was too 

susceptible to false positives. Indeed, once we began 

to focus on looking for guide bars instead of looking 

for entire markers, this technique became obsolete. 

 

5. Conclusion 
 

This project proved to be a compelling 

exploration of the applications of image processing 

techniques discussed in EE368. It resulted in a great 

deal of experience in fine-tuning these algorithms and 

understanding the kinds of tradeoffs associated with 

their use. We believe that our efforts resulted in a 

robust visual code marker detector which should 

perform quite well with the final test images. 

 

6. Appendix 
 

Allen Huang worked on designing and implementing 

the algorithm, focusing specifically on the detection 

of markers. He also worked on reading bits from 

markers and overcoming difficulties involved in 

doing this after the markers had been located. Prabhu 

Balasubramanian worked primarily to explore 

methods of correcting perspective skew in the marker 

images, in addition to being the primary author of 

this report. Both authors were heavily involved in 

suggesting various algorithmic possibilities, many of 

which did not ultimately find their way into the final 

product. The total estimated number of man-hours 

spent on this project is approximately 100. 


