Problem Session 4
Topics

• High dynamic range images
 • Debevec’s Method
 • Tone mapping

• SNR Calculations
 • Burst Imaging
 • Flutter Shutter
HDR & Tone mapping

Several 8-bit images acquired at different exposures ([0 255])

64-bit image that has all important information

Tone mapping

8-bit image that has all important information and can be viewed on a regular screen
Task 1: High dynamic range

(Debevec’s method)
Task 1: High dynamic range

Linearize the images using gamma of 2.2
Task 1: High dynamic range image

Computing the weights: we want to give a higher weight to pixels that are close to the center of the dynamic range at each exposure k.

$$w_{k,ij} = \exp \left(-4 \frac{(I_{k,ij} - 0.5)^2}{0.5^2} \right)$$

Center of the dynamic range (127.5 if pixels are $[0,255]$)
Linearized image ($\gamma=2.2$)

Compute this per color channel
Task 1: High dynamic range

Weights using Debevec’s method (all 3 color channels)
Task 1: High dynamic range image

Find a good estimation, \hat{X}, for the “true image”, X, using an optimization problem:

Minimize the difference, in log scale, between your result, \hat{X}, at different exposures t_k and the acquired images at different exposures (I_{lin_k}). Multiplied by weight to indicate what’s more important.

$$\minimize_{\hat{X}} O = \sum_k w_k \left(\log(I_{\text{lin}_k}) - \log(t_k \hat{X}) \right)^2$$

Calculating the derivative of O, we get:

$$\hat{X} = \exp \left(\frac{\sum_k w_k \left(\log(I_{\text{lin}_k}) - \log(t_k) \right)}{\sum_k w_k} \right)$$
Task 1: High dynamic range - Tonemapping

• After exp, scaling, cropping, try your own scaling+gamma correction

• Choose scale and gamma yourself, report chosen parameters and resulting image
 • Don’t scale+shift to fill the range [0, 1], scale only

\[I_{HDR} = (s \times I_{HDR_{linear}})^\gamma \]

• Also try Drago’s tonemapping from opencv

```python
# Normalize
hdr = np.exp(hdr / scale)
hdr *= 0.8371896/np.mean(hdr)  # th

# convert to 32 bit floating point
hdr = np.float32(hdr)

# crop boundary - image data here as
hdr = hdr[29:720, 19:480, :]
```
Task 1: High dynamic range

Adjusting γ and s

\[\gamma = \frac{1}{5} \quad \gamma = \frac{1}{3} \quad \gamma = \frac{1}{2.2} \]

$s = 0.1$

$s = 1.0$

\[\gamma = \frac{1}{4} \]
Task 1: High dynamic range

Generate a tonemapped image using
\texttt{cv2.createTonemapDrago}
Task 2/3: Denoising and SNR

- **Read noise**
 - Noise from heat in pixel hardware when image is captured
 - Signal-independent
 - Typically modelled as a **Gaussian distribution**

- **Shot noise**
 - Noise from statistics of light-pixel interactions
 - Signal-dependent
 - Typically modelled as a **Poisson distribution**
Task 2: Burst SNR calculations

\[SNR = \frac{\mu}{\sigma} = \frac{\text{mean number of photons}}{\text{standard deviation of noise}} \]

- Adding \(k \) signals of strength \(\mu \) \(\Rightarrow \) mean becomes \(k\mu \)
- Scaling Gaussian/Poisson variable by \(k \) \(\Rightarrow \) variance becomes \(k^2\sigma^2 \)
- Adding independent Gaussian distributions
 \[G(\mu_1, \sigma_1^2) + G(\mu_2, \sigma_2^2) \sim G(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) \]
- Adding independent Poisson distributions
 \[\text{Pois}(\lambda_1) + \text{Pois}(\lambda_2) \sim \text{Pois}(\lambda_1 + \lambda_2) \]
- Both signal and noise increase with the number of photons.
 - However, signal increases faster than noise!
Task 3: Flutter Shutter

You’re asked to compare the SNR of two imaging setups:
- Consumer camera in everyday use
- sCMOS in microscopy

At different acquisition modes:
- Flutter shutter
- Burst

Calculate the SNR and discuss your results.
Task 3: SNR calculations

Consumer camera in everyday conditions:
- Lots of photons (low shot noise)
- Room temperature (high read noise)

sCMOS microscope sensor in controlled conditions:
- Few photons (high shot noise)
- Cooled sensor (low read noise)
Task 3: SNR calculations

Flutter shutter: temporally modulated aperture pattern. Used, for example, for better motion deblurring (see “Coded Exposure Photography: Motion Deblurring using Fluttered Shutter”, Raskar et al.). The result is a single image.

Burst: acquires multiple short-exposure images. (for this problem, assume no delay between exposures)

Tradeoff: Number of exposures vs. number of photons
Task 3: SNR calculations

For each of the four cases, calculate:
 • The average number of photons (the signal)
 • The standard deviation of the noise
 • and divide them

Don’t forget to describe your results and conclusions.

Intuitively, what general behavior do you expect?
Bonus: your own HDR image

Around ~10 images with different exposures
Have a nice weekend!
And good luck with the homework!

Stanford Memorial Church (HDR) https://www.flickr.com/photos/scottloftness/4334766965