Topics

• Camera optics – concepts & intuition
 • F-number
 • Depth of Field (DoF)
 • Circle of confusion

• Image processing pipeline
 • Demosaicing: several methods
 • Gamma correction

• Denoising
 • Several methods
Camera optics – concepts & intuition
Task 1: Depth of field

f-number, N, is given by $N = \frac{f}{D}$, where f is the **focal length** and D is the diameter of the pupil (effective **aperture**). Written as f/N.

Magnification, $M = \frac{f_1}{S_1} = \frac{f}{S_1 - f}$, S_1 is the distance between lens and focal plane in the scene (not in the camera).

Lens equation: $\frac{1}{f} = \frac{1}{S_1} + \frac{1}{f_1}$
Task 1: Depth of field

Circle of confusion, \(c = MD \frac{|s_2 - s_1|}{s_2} \)

→ From this, calculate the near and far planes \((S_N, S_F)\), which are at the edges of being in focus
Task 1: Depth of field

Depth of field (DoF): the depth range around the focal plane of the camera that produces a circle of confusion with a diameter c.

$$\text{DoF} = S_F - S_N = \frac{2Nc(M+1)}{M^2 - \left(\frac{Nc}{f}\right)^2}$$

N is f-number of lens

![Diagram of depth of field](image)

- Image is in focus
- Image is blurry
Task 1: Depth of field

- Small f# (N) blur faster
- When focusing far, camera is more depth invariant (f is fixed)
Task 1: Depth of field

Using the graph, what is the DOF?

Legend:
- **Blue Line:** f# = 20
- **Green Line:** f# = 15
- **Purple Line:** f# = 10
- **Orange Line:** f# = 5
- **Red Line:** f# = 3

Graph Details:
- **x-axis:** Object length in mm
- **y-axis:** Blur diameter in mm
- **Focus point:** 100 mm
- **Allowed blur:** Defined by pixel size and manufacturer
- **DOF:** Indicates the depth of field range where the object is in focus.

Graph Elements:
- **Arrow indicating focus:** At 100 mm
- **Allowed blur range:** Extending from the focus point

Graph Analysis:
- The graph shows how the blur diameter changes with object length for different f# values.
- The focus point is marked at 100 mm.
- The allowed blur range is determined by the pixel size and manufacturer specifications.
- The depth of field (DOF) refers to the range of distances over which the object is acceptably sharp.
Nice visualization

Photography mapped:
http://photography-mapped.com/interact.html

Play with the parameters and see what happens!
Task 2: Image processing pipeline (ISP)

Simple ISP:

Linear image → Demosaicing → Gamma correction → RGB image

Bayer pattern
Task 2: Image processing pipeline (ISP)

Gamma correction:
- Scale pixel values to $[0, 1]$ first
- Apply the gamma function $I \rightarrow I^{\left(\frac{1}{2.2}\right)}$
Task 2: Image processing pipeline (ISP)

Demosaicing:
Completing the missing values, for example, red in green pixel

First, find the order of colors in the Bayer pattern
Task 2: Image processing pipeline (ISP)

Implement several types of demosaicing:

1. Simple bilinear
2. Linear Demosaicing + low pass filtering the chrominance
3. High quality linear interpolation

Compare images both visually and quantitatively using the PSNR.
Task 2: Image processing pipeline (ISP)

• Calculate the mean squared error (MSE) and the peak signal-to-noise ratio (PSNR):

\[
MSE = \frac{1}{3mn} \sum_{c=1}^{3} \sum_{i=1}^{m} \sum_{j=1}^{n} [I_{\text{original}}(i, j, c) - I_{\text{restored}}(i, j, c)]^2
\]

\[
PSNR = 10 \log_{10} \left(\frac{\max(I_{\text{original}})^2}{MSE} \right)
\]

• Calculate PSNR after applying gamma correction
Task 2: Image processing pipeline (ISP)

Linear demosaicing:

• Create maps of the pixel coordinates with `np.meshgrid`.

• Interpolate the missing channels with `scipy.interpolate.interp2d`. The default is linear interpolation.

• Hints:
 • For the green channel, it’s easier to average shifted versions of the original green channel. You can use `np.roll` to shift the image.
 • Combine the 3 channels into an RGB image using `np.stack([R, G, B], axis=2)`
Task 2: Image processing pipeline (ISP)

Simply interpolating the missing pixels may cause color artifacts
Task 2: Image processing pipeline (ISP)

Low pass filtering the chrominance should reduce these artifacts

- Using the result of the linear demosaiced image (before gamma correction)
- Use `skimage.color.rgb2ycbcr` to separate luminance and chrominance
- Luminance is given by Y and chrominance by Cb and Cr
- Smooth the chrominance, for example by median filtering (`scipy.ndimage.median_filter`, size 9)
- Convert back to RGB by using `skimage.color.ycbcr2rgb`
Task 2: Image processing pipeline (ISP)

Compare the results

Linear

Linear + smoothing the chrominance
Task 2: Image processing pipeline (ISP)

High quality linear interpolation:

• Still linear interpolation, BUT, interpolating one color channel uses information from other color channels.

• Exploiting the correlation among the RGB channels is the main idea for improving demosaicing performance.

• Goal: preserve as much detail as possible.
Task 2: Image processing pipeline (ISP)

High quality linear interpolation:

• Assumption: edges have much stronger luminance than chrominance components

• → if there is a sharp change in one channel, it probably means there is a sharp luminance change

• Therefore, the change in one channel should be used in the interpolation of the other channels
Task 2: Image processing pipeline (ISP)

High quality linear interpolation filters:

• Builds upon simple linear interpolation and adds gradients from other channels
• Some of the filters are similar, only 4 unique
• Many multiplications are factors of 2. This is extremely more efficient in hardware compared to regular multiplication
• Hints:
 • Convolve the entire image with the filters, then choose the pixels you need in order to complete the RGB image correctly
Task 2: Image processing pipeline (ISP)

Compare the results

Linear

High Quality Linear

Are there less or more color artifacts?
What about detail?
Task 3: Denoising

1. Gaussian Filtering (use provided `fspecial_gaussian_2d` and `scipy.signal.convolve2d`)
2. Median Filtering (use `scipy.ndimage.median_filter`)
3. Bilateral Filtering
4. Non-local Means
Task 3: Denoising

Bilateral filtering

A non-linear, edge-preserving and noise-reducing smoothing filter. The intensity value at each pixel in an image is replaced by a weighted average of intensity values from nearby pixels. The weights depend not only on Euclidean distance of pixels, but also on the radiometric differences.

\[
I_{\text{filtered}}(x) = \frac{1}{W_p} \sum_{x_i \in \Omega} I(x_i) f_r(\|I(x_i) - I(x)\|) g_s(\|x_i - x\|),
\]

\[
W_p = \sum_{x_i \in \Omega} f_r(\|I(x_i) - I(x)\|) g_s(\|x_i - x\|)
\]
Task 3: Denoising

Bilateral filtering of a pixel on the high side of the edge
Task 3: Denoising

Bilateral filtering hints:

• Use a Gaussian function for both weights. For the spatial weight use `fspecial` and for the intensity weight calculate $e^{-\frac{(I(x_i) - I(x))^2}{2\sigma_{int}^2}}$

• Accumulate the weights to obtain W_p

\[
I_{\text{filtered}}(x) = \frac{1}{W_p} \sum_{x_i \in \Omega} I(x_i) f_r(||I(x_i) - I(x)||) g_s(||x_i - x||),
\]

\[
W_p = \sum_{x_i \in \Omega} f_r(||I(x_i) - I(x)||) g_s(||x_i - x||)
\]
Task 3: Denoising

Non-local means

Given a discrete noisy image $v = \{ v(i) \mid i \in I \}$, the estimated value $NL[v](i)$, for a pixel i, is computed as a weighted average of all the pixels in the image,

$$NL[v](i) = \sum_{j \in I} w(i, j)v(j),$$

where the family of weights $\{w(i, j)\}_j$ depend on the similarity between the pixels i and j, and satisfy the usual conditions $0 \leq w(i, j) \leq 1$ and $\sum_j w(i, j) = 1$.

These weights are defined as,

$$w(i, j) = \frac{1}{Z(i)} e^{-\frac{||v(N_i) - v(N_j)||_2^2}{h^2}},$$

where $Z(i)$ is the normalizing constant

$$Z(i) = \sum_j e^{-\frac{||v(N_i) - v(N_j)||_2^2}{h^2}}$$

h controls the decay of the weights as a function of the Euclidean distances.

Weighted norm: Gaussian with standard deviation a.

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, $w(p,q1)$ and $w(p,q2)$, while much different neighborhoods give a small weight $w(p,q3)$.
Nonlocal Means – weight calculation

Search neighborhood

Pixel i

Pixel j

Patches, gaussian weighted

$$w(i, j) = \exp \left(-\frac{1}{2\sigma^2} \| \text{Pixel i} - \text{Pixel j} \|^2 \right)$$
Task 3: Denoising

Non-local means hints:

• Pad image to reduce boundary artifacts.

• Don’t search the whole image for similar neighborhoods – it will take too long. Restrict the search to 15x15 pixels (or less).

• The windows overlap.

• Do not include the window centered on the current pixel when searching for other, similar windows!

• The formula for the weighted norm is

\[w(i,j) = \frac{1}{Z(i)} \exp \left(-\frac{\sum_{mn} (k_{mn} (\nu(N_i)_{mn} - \nu(N_j)_{mn})^2)}{h^2} \right) \]

• \(k_{mn} \) can be coefficients of a 2D Gaussian kernel.

• Accumulate the weights to obtain the normalization factor. Normalize the weights to obtain a sum of 1.

NB: Weight the center pixel with the maximal weight seen in the neighborhood.
Task 3

Expected results

Noisy image

Which looks best?
Have a nice weekend!
And good luck with the homework!