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Abstract—Generative modeling has become an essential 
component of modern machine learning, offering transformative 
solutions in data processing and generation across various domains. 
Among these, diffusion models have gained prominence as a robust 
approach capable of generating high-quality images and solving 
challenging inverse problems. In this work, we demonstrate the 
versatility of diffusion models by employing a pretrained score-
predicting function for single-step denoising, and implementing the 
denoising diffusion probabilistic model (DDPM) framework for 
unconditional image generation. Furthermore, we solve inverse 
problems with pretrained diffusion models as priors, showcasing their 
potential in tasks like image inpainting and deblurring. To achieve this, 
we implemented score-distillation editing (SDEdit) and two posterior 
sampling methods, including score annealed Langevin dynamics 
(ScoreALD) and diffusion posterior sampling (DPS).  

Keywords—Computational imaging; Diffusion models; Image 
generation; Inverse problems 

I. INTRODUCTION 

Generative modeling has emerged as a cornerstone of 
modern machine learning, finding applications across diverse 
industries. From enabling chatbots, and powering data 
generation to advancing signal analysis, generative models have 
become integral to many aspects of daily life. Over the years, 
these models have evolved significantly, progressing from early 
probabilistic approaches to state-of-the-art, deep-learning-based 
methods. Notable advancements include generative adversarial 
networks (GANs) [1], variational autoencoders (VAEs)[2], 
autoregressive models[3], flow-based models[4], and diffusion 
models[5]. 

Diffusion models generate data by modeling a progressive 
transformation of random noise into complex data distributions. 
This is achieved through a step-by-step reversal of a corruption 
process, effectively “denoising” the data.  Diffusion models are 
straightforward to define and efficient to train[6], and they have 
been gaining significant traction as alternatives or improvements 
to traditional likelihood-based and generative adversarial 
network-based approaches in tasks such as image and audio 
synthesis.  

Beyond data generation, diffusion models have also shown 
remarkable potential as generative inverse problem solvers, 
thanks to their ability to produce high-quality reconstructions 
and the ease of combining with existing iterative solvers. Inverse 
problems are prevalent across numerous domains, with 
applications ranging from signal processing[7] and medical 
imaging[8] to seismic imaging[9] and astrophysics[10, 11]. By 
treating them as unsupervised priors, diffusion models have 

unlocked exciting new possibilities for tackling complex inverse 
problems, particularly in image restoration and reconstruction. 

In this work, we explore the versatility of diffusion modeling 
in both image generation and three classic inverse problems in 
computational imaging: denoising, deblurring, and inpainting. 
Using a pretrained score-predicting function, we implement a 
single-step method for image denoising. For unconditional 
image generation, we follow the framework of denoising 
diffusion probabilistic models (DDPM)[6], using this diffusion 
model to generate images with an iterative denoising procedure. 
Furthermore, we used the pretrained diffusion model as priors to 
address inpainting and deblurring tasks, firstly with the score-
distillation editing (SDEdit) method[12], followed by posterior 
sampling techniques, including score annealed Langevin 
dynamics (ScoreALD)[13] and diffusion posterior sampling 
(DPS)[14]. These posterior sampling approaches exemplify 
modern advancements in solving inverse problems through 
generative modeling. 

II. RELATED WORK 

 Although this work focuses exclusively on linear inverse 
problems, diffusion-based approaches have been successfully 
extended to tackle more general noisy inverse problems, 
including nonlinear challenges such as super-resolution, non-
uniform deblurring, and phase retrieval[14]. Furthermore, the 
multi-modal extensions of variants of convolutional neural 
network (CNN)–based diffusion models and large language 
models (LLMs) have led to the explosive advances in text-to-
image synthesis and image-text contrastive learning in recent 
years[15]. Last but not least, other generative methods, such as 
GANs[1, 16, 17], VAEs[18] and autoregressive models[19] 
have demonstrated capabilities of generating high-quality 
image and audio samples. Interested readers can refer to for a 
thorough review of other generative methods for multi-modal 
image synthesis and editing[20]. 

III. METHODS 

A. Background: Diffusion Models 

A diffusion model is a parameterized Markov chain trained 
using variational inference to produce samples matching the 
data after finite time. The forward diffusion process is a Markov 
chain that gradually adds noise to the data in the opposite 
direction of sampling until signal is destroyed, and transitions 
of this chain are learned to reverse a diffusion process[6]. Song 
et al. [21] defined the stochastic differential equation (SDE) for 



the data noising process (i.e. forward SDE) 𝒙ሺ𝑡ሻ, 𝑡 ∈ ሾ0,𝑇ሿ, 
𝒙ሺ𝑡ሻ ∈ ℝௗ∀𝑡. The variance preserving (VP) form of the SDE is 
as the following  

 𝑑𝒙 ൌ െ
ఉሺ௧ሻ

ଶ
𝒙𝑑𝑡 ൅  ඥ𝛽ሺ𝑡ሻ𝑑𝝎  (1) 

where 𝛽ሺ𝑡ሻ ∶  ℝ → ℝ ൐ 0 is the noise schedule of the process, 
and 𝝎  the standard 𝑑  dimensional Wiener process. 
Discretizing SDE using the Euler-Maruyama method yields 

 𝒙௧ ൌ  ඥ1 െ 𝛽௧𝒙௧ିଵ ൅ ඥ𝛽௧𝒛௧ିଵ , 𝑡 ൌ 1, … ,𝑇 (2) 

where 𝒛௧ିଵ ∼ 𝒩ሺ0, 𝐼ሻ are i.i.d. Gaussian random variables in 
each step. Equation (2) can be written as a conditional 
distribution that does not depend on step 𝑡 െ 1 but only on the 
very first step 𝑡 = 0: 

 𝒙௧ ൌ  ඥ𝛼ത௧𝒙𝟎 ൅ ඥ1 െ  𝛼ത௧z (3) 

where 𝛼௧ ൌ 1 െ 𝛽௧, 𝛼ത௧ ൌ ∏  𝛼௜
௧
௜ୀଵ , and 𝐳 ∼ 𝒩ሺ0, 𝐼ሻ 

Poof of equation (3) By math induction, firstly we prove 
the base case 𝑡 = 1 is true given equation (2): 

𝒙ଵ ൌ  ඥ1 െ 𝛽ଵ𝒙଴ ൅ ඥ𝛽ଵ𝒛଴ 
ൌ ඥ𝛼തଵ𝒙଴ ൅ ඥ1 െ 𝛼തଵ𝒛଴ 

ൌ ඥ𝛼തଵ𝒙଴ ൅ ඥ1 െ 𝛼തଵ𝐳 

Then we prove that if equation (3) holds for any case 𝑡 – 1, 
then it must hold for the next case 𝑡 as the following. 

If  𝒙௧ିଵ ൌ  ඥ𝛼ത௧ିଵ𝒙𝟎 ൅ ඥ1 െ  𝛼ത௧ିଵz is true,  

then equation (2) amounts to: 

x௧ ൌ  ඥ1 െ 𝛽௧x௧ିଵ ൅ ඥ𝛽௧𝒛௧ିଵ 
ൌ ඥ𝛼௧൫ඥ𝛼ത௧ିଵ𝒙𝟎 ൅ ඥ1 െ  𝛼ത௧ିଵ𝐳 ൯ ൅ ඥ𝛽௧𝒛௧ିଵ 

ൌ  ඥ𝛼ത௧𝒙𝟎 ൅  ඥ𝛼௧ െ  𝛼ത௧𝐳 ൅ඥ1 െ 𝛼௧𝒛௧ିଵ 

So  x௧∼ 𝒩ቀඥ𝛼ത௧𝒙𝟎, ൫ඥ𝛼௧ െ  𝛼ത௧ ൯
ଶ
൅ ൫ඥ1 െ 𝛼௧ ൯

ଶ
ቁ 

x௧∼ 𝒩൫ඥ𝛼ത௧𝒙𝟎, 1 െ  𝛼ത௧൯ 

which is equivalent to 

x௧ ൌ  ඥ𝛼ത௧𝒙𝟎 ൅  ඥ1 െ  𝛼ത௧𝐳 

This concludes the proof. 

B. Unconditional Sampling with Diffusion Models 

The image generation problem can be considered as 
gradually removing noise from a noisy observation 𝒙௧  to 
recover 𝒙𝟎 through the reverse of the nosing diffusion process 
(i.e. reverse SDE). The discrete reverse SDE takes the form of 
the following[6] 

 𝒙𝒕ି𝟏 ൌ  
ଵ

ඥఈ೟
ቆ𝒙𝒕 െ

ଵିఈ೟
ඥଵି ఈഥ೟

𝝐𝜽ሺ𝒙𝒕 , 𝑡ሻቇ (4)  

where 𝝐𝜽 is a function approximator intended to predict the 
noise 𝝐 from 𝒙𝒕. Equivalent process can be achieved with a 
score-predicting network 𝐬𝜽 instead of a noise-predicting 

network 𝝐𝜽, given the relation 𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ ൌ  െ
𝝐𝜽ሺ𝒙𝒕 ,௧ሻ

ඥଵି ఈഥ೟
 . 

Substituting this into equation (4): 

𝒙𝒕ି𝟏 ൌ  
1

ඥ𝛼௧
ቌ𝒙𝒕 െ

1 െ 𝛼௧
ඥ1 െ  𝛼ത௧

𝝐𝜽ሺ𝒙𝒕 , 𝑡ሻቍ 

ൌ
1

ඥ𝛼௧
ቌ𝒙𝒕 െ

1 െ 𝛼௧
ඥ1 െ  𝛼ത௧

 ൫െඥ1 െ  𝛼ത௧൯𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻቍ 

 𝒙𝒕ି𝟏 ൌ  
ଵ

ඥఈ೟
൫𝒙𝒕 ൅ ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯  (5) 

Equation (5) can be split into two equations to explicitly include 
the predicted clean image 𝒙ෝ଴ , that is  

 𝐱ො଴ ൌ  
ଵ

ඥఈഥ೟
൫𝒙𝒕 ൅ ሺ1 െ 𝛼ത௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ (6)

  

 𝒙𝒕ି𝟏 ൌ  ඥ
ఈ೟ሺଵିఈഥ೟షభሻ

ଵି ఈഥ೟ 
 x௧ ൅  ඥ

ఈഥ೟షభሺଵିఈ೟ሻ

ଵି ఈഥ೟ 
𝐱ො଴ (7)

  

 
௜௦ ௘௤௨௜௔௟௘௡௧ ௧௢ 
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 

 𝒙𝒕ି𝟏 ൌ  
ଵ

ඥఈ೟
൫𝒙𝒕 ൅ ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ (5) 

Poof. 

𝒙𝒕ି𝟏 ൌ  
ඥ𝛼௧ሺ1 െ 𝛼ത௧ିଵሻ

1 െ  𝛼ത௧ 
 x௧ ൅  

ඥ𝛼ത௧ିଵሺ1 െ 𝛼௧ሻ

1 െ  𝛼ത௧ 
𝐱ො଴ 

ൌ
ඥ𝛼௧ሺ1 െ 𝛼ത௧ିଵሻ

1 െ  𝛼ത௧ 
 x௧ ൅  

ඥ𝛼ത௧ିଵሺ1 െ 𝛼௧ሻ

1 െ  𝛼ത௧ 

∙
1

ඥ𝛼ത௧
൫𝒙𝒕 ൅ ሺ1 െ 𝛼ത௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ 

ൌ
ඥ𝛼௧ሺ1 െ 𝛼ത௧ିଵሻ

1 െ  𝛼ത௧ 
 x௧ ൅  

ඥ𝛼ത௧ିଵሺ1 െ 𝛼௧ሻ

1 െ  𝛼ത௧ 
1

ඥ𝛼ത௧
𝒙𝒕

൅  
ඥ𝛼ത௧ିଵ

ඥ𝛼ത௧
ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ 

ൌ
ඥ𝛼௧ ∙ 𝛼ത௧ሺ1 െ 𝛼ത௧ିଵሻ ൅  ඥ𝛼ത௧ିଵሺ1 െ 𝛼௧ሻ

ඥ𝛼ത௧ሺ1 െ  𝛼ത௧ሻ 
𝒙𝒕

൅  
1

ඥ𝛼௧
ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ 

ൌ  
ඥ𝛼௧ ∙ 𝛼௧𝛼ത௧ିଵሺ1 െ 𝛼ത௧ିଵሻ ൅  ඥ𝛼ത௧ିଵሺ1 െ 𝛼௧ሻ

ඥ𝛼ത௧ሺ1 െ  𝛼ത௧ሻ
𝒙𝒕

൅  
1

ඥ𝛼௧
ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ 

ൌ
𝛼௧ඥ𝛼ത௧ିଵሺ1 െ 𝛼ത௧ିଵሻ ൅  ඥ𝛼ത௧ିଵሺ1 െ 𝛼௧ሻ

ඥ𝛼ത௧ሺ1 െ  𝛼ത௧ሻ
𝒙𝒕

൅
1

ඥ𝛼௧
ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ 

ൌ
ඥ𝛼ത௧ିଵሺ𝛼௧ െ 𝛼ത௧ ൅ 1 െ 𝛼௧ሻ

ඥ𝛼ത௧ሺ1 െ  𝛼ത௧ሻ
𝒙𝒕 ൅

1

ඥ𝛼௧
ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ 



ൌ
ඥ𝛼ത௧ିଵ

ඥ𝛼ത௧
𝒙𝒕 ൅

1

ඥ𝛼௧
ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ 

ൌ
1

ඥ𝛼௧
൫𝒙𝒕 ൅ ሺ1 െ 𝛼௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ 

This concludes the proof. 

With that, an unconditional image generation procedure can 
be implemented with a score-predicting function by reverse 
SDE, as summarized by the pseudocode below. 

DDPM 

𝒙𝑻 ~𝒩ሺ0, 𝐼ሻ 

for 𝑡 ൌ 𝑇, … ,1 do 

 𝐳 ∼ 𝒩ሺ0, 𝐼ሻ if 𝑡 ൐ 1, else 𝐳 ൌ 𝟎 

 𝐱ො଴ ൌ  
ଵ

ඥఈഥ೟
൫𝒙𝒕 ൅ ሺ1 െ 𝛼ത௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ 

 𝒙𝒕ି𝟏 ൌ  ඥ
ఈ೟ሺଵିఈഥ೟షభሻ

ଵି ఈഥ೟ 
 x௧ ൅  ඥ

ఈഥ೟షభሺଵିఈ೟ሻ

ଵି ఈഥ೟ 
𝐱ො଴ ൅ ඥ1 െ 𝛼௧ 𝐳 

end for 

return 𝒙𝟎 

 

C. Posterior Sampling with Diffusion Models 

In inverse problems, the aim is to recover an unknown 
sample 𝒙 ∈ ℝ௡ , assuming known measurements 𝒚 ∈ ℝ௠ and 
a forward model 𝒜 

 𝒚 ൌ  𝒜ሺ𝒙ሻ ൅  𝒛, 𝒛 ~𝒩ሺ𝟎, 𝑰𝒎ሻ (8) 

Looking through the lens of Bayesian inference, given 
measurements 𝒚 , the goal can be interpreted as generating 
plausible reconstructions by sampling from the posterior 
distribution 𝑝ሺ𝒙|𝒚ሻ, where 𝑝ሺ𝒙|𝒚ሻ ∝ 𝑝ሺ𝒚|𝒙ሻ𝑝ሺ𝒙ሻ as stated by 
the Bayes' rule. Diffusion models can be utilized as priors for 
𝑝ሺ𝒙ሻ  to generate reconstructions by sampling from the 
posterior distribution. Considering the continuous reverse SDE, 
the reverse diffusion sampler for sampling from the posterior 
distribution can be arranged as[21] 

𝑑𝒙 ൌ ሾെ
𝛽ሺ𝑡ሻ

2
𝒙 െ 𝛽ሺ𝑡ሻ൫∇௫೟ log𝑝௧ሺ𝒙𝒕ሻ ൅ ∇௫೟ log𝑝௧ሺ𝒚|𝒙𝒕ሻ൯ሿ𝑑𝑡

൅  ඥ𝛽ሺ𝑡ሻ𝑑𝝎ഥ  
  (9) 

The score function term ∇௫೟ log𝑝௧ሺ𝒙𝒕ሻ  can be computed 
using a pre-trained score-predicting function 𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ . 
However, the likelihood term ∇௫೟ log𝑝௧ሺ𝒚|𝒙𝒕ሻ is analytically 
intractable due to their dependence on time 𝑡. Various 
approximations have been explored by the community to 
circumvent the intractability of posterior sampling[22]. 

As one of the first proposed methods for solving linear 
inverse problems with diffusion models, ScoreALD method 
approximates the likelihood gradient as ∇௫೟ log𝑝ሺ𝒚|𝒙𝒕ሻ  ≃

 
𝓐ಹሺ𝒚ି𝓐𝒙𝒕 ሻ

𝝈𝟐ା 𝜸𝒕
𝟐  , where ሼ𝛾௧ሽ௧ୀଵ்  are hyperparameters. 

Alternatively, the DPS method uses the approximate 
gradient of the log likelihood: ∇௫೟ log𝑝ሺ𝒚|𝒙𝒕ሻ  ≃
 ∇௫೟ log𝑝ሺ𝒚|𝒙ෝ𝟎ሻ , where the latter is analytically tractable, as 
the measurement distribution is given. It is worth noting that, 
while this paper focuses on solving linear inverse problems, 
DPS is also capable of tackling more general inverse problems, 
including nonlinear cases, which ScoreALD and many other 
early posterior sampling approaches cannot handle[14]. In the 
experimental section, we implemented ScoreALD and DPS 
using a pretrained score-predicting function, and the sampling 
loops are described below. 

ScoreALD  

𝒙𝑻 ~𝒩ሺ0, 𝐼ሻ 

for 𝑡 ൌ 𝑇, … ,1 do 

 𝐳 ∼ 𝒩ሺ0, 𝐼ሻ if 𝑡 ൐ 1, else 𝐳 ൌ 𝟎 

 𝐱ො଴ ൌ  
ଵ

ඥఈഥ೟
൫𝒙𝒕 ൅ ሺ1 െ 𝛼ത௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ 

 𝒙𝒕ି𝟏ᇱ ൌ  ඥ
ఈ೟ሺଵିఈഥ೟షభሻ

ଵି ఈഥ೟ 
 x௧ ൅  ඥ

ఈഥ೟షభሺଵିఈ೟ሻ

ଵି ఈഥ೟ 
𝐱ො଴ ൅ ඥ1 െ 𝛼௧ 𝐳 

 𝒙𝒕ି𝟏 ൌ 𝒙𝒕ି𝟏ᇱ െ   
𝟏

𝝈𝟐ା 𝜸𝒕
𝟐 ∇௫೟‖𝓐ሺ𝒙𝒕ሻ െ 𝒚‖𝟐 

end for 

return 𝒙𝟎 

 

DPS 

𝒙𝑻 ~𝒩ሺ0, 𝐼ሻ 

for 𝑡 ൌ 𝑇, … ,1 do 

 𝐳 ∼ 𝒩ሺ0, 𝐼ሻ if 𝑡 ൐ 1, else 𝐳 ൌ 𝟎 

 𝐱ො଴ ൌ  
ଵ

ඥఈഥ೟
൫𝒙𝒕 ൅ ሺ1 െ 𝛼ത௧ሻ𝐬𝜽ሺ𝒙𝒕 , 𝑡ሻ൯ 

 𝒙𝒕ି𝟏ᇱ ൌ  ඥ
ఈ೟ሺଵିఈഥ೟షభሻ

ଵି ఈഥ೟ 
 x௧ ൅  ඥ

ఈഥ೟షభሺଵିఈ೟ሻ

ଵି ఈഥ೟ 
𝐱ො଴ ൅ ඥ1 െ 𝛼௧ 𝐳 

 𝒙𝒕ି𝟏 ൌ 𝒙𝒕ି𝟏ᇱ െ   
𝜻𝒕
𝟐𝝈𝟐

∇௫೟‖𝓐ሺ𝐱ො଴ሻ െ 𝒚‖𝟐 

end for 

return 𝒙𝟎 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Single-Step Denoising 

In this section, the diffusion model pretrained on the FFHQ-
256 dataset was utilized to perform single-step denoising. Noisy 
images (x௧ ) were generated by adding i.i.d. Gaussian noise 
z ∼𝒩ሺ0, 𝐼ሻ to the clean test image (x଴), following the forward 
process described by equation (3) with the noise schedule 𝛽𝑡. 
Images at different noise levels were obtained by selecting 
various diffusion steps 𝑡 in the forward noising process. The 
predicted denoised image (𝐱ො଴) was obtained by applying the 
reverse process to the noisy image (x௧) using the single-step 



model prediction method described in equation (6), with the 
pretrained score predictor 𝐬𝜽. 

Fig. 1 illustrates the results of denoising a test human face 
image at three progressively increasing noise levels (𝑡 ൌ 50, 𝑡 ൌ 
100, and 𝑡 ൌ 200). PSNR and LPIPS were computed as 
quantitative metrics to assess the quality of the denoised images. 
Although PSNR gradually decreases as the noise level increases, 
it retains a reasonable value of 29.6 dB even at the highest noise 
level. Conversely, LPIPS increases from 0.0549 to 0.1531 as the 
noise level rises from 𝑡 ൌ 50 to 𝑡 ൌ 200, reflecting a decline in 
perceptual similarity relative to the ground truth as the input 
starts with more noise and the denoising process involves more 
reverse diffusion steps. 

 

Fig. 1 Single-step denoising at different noise levels 

Furthermore, this denoising method was evaluated on a non-
human face input image (Fig. 2). The model exhibited plausible 
performance on this test image of a red panda, achieving a 
relatively high PSNR of 29.2 dB and a low LPIPS of 0.2123. 
This outcome is likely due to the red panda face shares plenty 
structural similarities to the human faces on which the diffusion 
model was trained. However, when compared to the denoised 
human face image at the same input noise level (t=100) the 
denoised red panda image demonstrates a lower PSNR and a 
higher LPIPS, suggesting the model indeed performs worse as 
the input image deviates from the distribution of the model’s 
training data. 

 

Fig. 2 Single-step denoising on a non-human face noisy image 

 

B. Unconditional Image Generation 

Unconditional imaging generation with the pretrained 
diffusion model was demonstrated in this section, using the 
DDPM procedure. The process began by initializing the image 
as pure Gaussian random noise, which was then iteratively 
denoised according to a parameter schedule over 1,000 steps. 
Three images (x௧ୀ଴) were generated using this approach and are 
presented in Fig. 3 alongside partially denoised intermediate 
results at 700 (x௧ୀଷ଴଴) and 950  (x௧ୀହ଴) steps. The generated 
images are all identifiable as photorealistic human portraits; 
however, certain imperfections are evident. For instance, the 
first image contains an arbitrary object in the foreground. 
Additionally, the third image is oversaturated, resulting in the 
loss of fine details, particularly the hairs. 

 

Fig. 3 Unconditional image generation 

C. Solving Inverse Problems 

Here we explored the applications of the diffusion model in 
solving two inverse problems: image inpainting and 
deconvolution with SDEdit, ScoreALD and DPS. 

1)  SDEdit  
SDEdit is an image synthesis and editing framework based 

on stochastic differential equations developed by Meng et 
al.[12]. In this implementation of SDEdit, we first add noise to 
the input, then subsequently denoises the resulting partially 
noised version of the input image through the DDPM denoising 
procedure to enhance its realism.  

Fig. 4, 5 exhibit the results of applying SDEdit to two tasks: 
inpainting an image partially obscured by a box mask and 
deblurring an image with by Gaussian blur. For each task, three 
noise levels (𝑡 ൌ 250, 𝑡 ൌ 500, and 𝑡 ൌ 750) were evaluated to 



analyze the impact of the noise magnitude on the overall quality 
of the reconstructed images. 

 

Fig. 4 Box-type inpainting with SDEdit at three noise levels 

 

Fig. 5 Gaussian deblurring with SDEdit at three noise levels 

The results reveal a clear trend: as more noise is added to the 
input image and additional reverse diffusion steps are taken 
during denoising, more artifacts from the original input are 
removed. However, this also leads to the erosion of other 
features, resulting in outcomes that are less faithful to the input 
image. As shown in Fig. 4, 5, when the noise level is insufficient 
(𝑡 ൌ 250) to obscure the artifacts in the input, the inpainting or 

deblurring task essentially "fails", as the output images retain 
significant traces of the original mask or blur. On the other 
extreme of the spectrum, when an excessive amount of noise is 
added during initialization (𝑡 ൌ 750), the noisy input lacks 
sufficient information about the original image, rendering the 
denoising process effectively "unconditional" and producing 
outputs that no longer resemble the input images.  

Among the three noise levels evaluated, 𝑡 ൌ 500 yields the 
best results for both inpainting and devolution tasks, as judged 
by parametric metrics such as PSNR and LPIPS, as well as 
qualitative assessments. Nonetheless, even the results at 𝑡 ൌ 
500 are suboptimal, highlighting the inherent difficulty of 
balancing restoration and faithfulness in a controllable manner 
in this approach. As demonstrated in the following section, 
posterior sampling approaches offer more effective solutions to 
these inverse problems. 

2) ScoreALD and DPS 
In this section, we experiment with two posterior sampling 

approaches for solving the inpainting and linear deblurring 
inverse problems, namely ScoreALD and DPS. 

Fig. 6 summarizes the results of applying ScoreALD and 
DPS to box-type inpainting and Gaussian deblurring tasks. For 
comparison, the results from the SDEdit method at noise level 
𝑡 ൌ 500, discussed in the previous section, are also included. 
Additionally, we applied these three diffusion-based 
approaches to the random-type inpainting task. Detailed anneal 
and scale parameters used for each task can be found in the 
code.  

 

Fig. 6 Box-/random-type inpainting and Gaussian deblurring 
with SDEdit, ScoreALD, and DPS 



As shown in Fig. 6, both posterior sampling methods 
significantly outperform SDEdit across all tasks, achieving 
consistently higher PSNR and lower LPIPS values. Between 
theses posterior sampling approaches, DPS demonstrates 
superior performance in terms of parametric metrics and 
qualitative evaluation, with the most notable improvements 
observed in the box inpainting task.  

While both ScoreALD and DPS produce high-quality 
outputs for box-type inpainting and Gaussian deblurring tasks, 
neither method achieves satisfactory results for random-type 
inpainting using the current anneal and scale parameters. 
Specifically, they fail to achieve both sufficiently high PSNR 
and low LPIPS simultaneously. Improved outcomes are 
anticipated with further fine-tuning of these parameters. 

 

V. CONCLUSION 

In this project, we have implemented a single-step method 
for image denoising using a pretrained score predictor, 
achieving high-quality denoised outputs for moderate to high 
noise levels. However, as expected, the performance of the 
diffusion-based denoiser deteriorated when applied to images 
outside the model's training distribution. Images generated using 
the DDPM framework were generally of good quality, although 
occasional imperfections in composition or saturation were 
observed. For image inpainting and deblurring tasks, posterior 
sampling methods such as ScoreALD and DPS significantly 
outperformed the more basic SDEdit approach, consistently 
achieving higher PSNR and lower LPIPS values. Notably, DPS 
demonstrated superior performance, particularly in box-type 
inpainting scenarios. While SDEdit requires careful selection of 
noise levels to effectively perturb the input images while 
maintaining a certain level of faithfulness to other general 
features, the posterior sampling methods provided more robust 
and effective solutions to these inverse problems, exemplifying 
the modern advancements enabled by generative modeling. 
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