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Abstract—Generative modeling has become an essential
component of modern machine learning, offering transformative
solutions in data processing and generation across various domains.
Among these, diffusion models have gained prominence as a robust
approach capable of generating high-quality images and solving
challenging inverse problems. In this work, we demonstrate the
versatility of diffusion models by employing a pretrained score-
predicting function for single-step denoising, and implementing the
denoising diffusion probabilistic model (DDPM) framework for
unconditional image generation. Furthermore, we solve inverse
problems with pretrained diffusion models as priors, showcasing their
potential in tasks like image inpainting and deblurring. To achieve this,
we implemented score-distillation editing (SDEdit) and two posterior
sampling methods, including score annealed Langevin dynamics
(ScoreALD) and diffusion posterior sampling (DPS).

Keywords—Computational imaging; Diffusion models; Image
generation; Inverse problems

I. INTRODUCTION

Generative modeling has emerged as a cornerstone of
modern machine learning, finding applications across diverse
industries. From enabling chatbots, and powering data
generation to advancing signal analysis, generative models have
become integral to many aspects of daily life. Over the years,
these models have evolved significantly, progressing from early
probabilistic approaches to state-of-the-art, deep-learning-based
methods. Notable advancements include generative adversarial
networks (GANSs) [1], variational autoencoders (VAEs)[2],
autoregressive models[3], flow-based models[4], and diffusion
models[5].

Diffusion models generate data by modeling a progressive
transformation of random noise into complex data distributions.
This is achieved through a step-by-step reversal of a corruption
process, effectively “denoising” the data. Diffusion models are
straightforward to define and efficient to train[6], and they have
been gaining significant traction as alternatives or improvements
to traditional likelihood-based and generative adversarial
network-based approaches in tasks such as image and audio
synthesis.

Beyond data generation, diffusion models have also shown
remarkable potential as generative inverse problem solvers,
thanks to their ability to produce high-quality reconstructions
and the ease of combining with existing iterative solvers. Inverse
problems are prevalent across numerous domains, with
applications ranging from signal processing[7] and medical
imaging[8] to seismic imaging[9] and astrophysics[10, 11]. By
treating them as unsupervised priors, diffusion models have
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unlocked exciting new possibilities for tackling complex inverse
problems, particularly in image restoration and reconstruction.

In this work, we explore the versatility of diffusion modeling
in both image generation and three classic inverse problems in
computational imaging: denoising, deblurring, and inpainting.
Using a pretrained score-predicting function, we implement a
single-step method for image denoising. For unconditional
image generation, we follow the framework of denoising
diffusion probabilistic models (DDPM)[6], using this diffusion
model to generate images with an iterative denoising procedure.
Furthermore, we used the pretrained diffusion model as priors to
address inpainting and deblurring tasks, firstly with the score-
distillation editing (SDEdit) method[12], followed by posterior
sampling techniques, including score annealed Langevin
dynamics (ScoreALD)[13] and diffusion posterior sampling
(DPS)[14]. These posterior sampling approaches exemplify
modern advancements in solving inverse problems through
generative modeling.

II. RELATED WORK

Although this work focuses exclusively on linear inverse
problems, diffusion-based approaches have been successfully
extended to tackle more general noisy inverse problems,
including nonlinear challenges such as super-resolution, non-
uniform deblurring, and phase retrieval[14]. Furthermore, the
multi-modal extensions of variants of convolutional neural
network (CNN)-based diffusion models and large language
models (LLMs) have led to the explosive advances in text-to-
image synthesis and image-text contrastive learning in recent
years[15]. Last but not least, other generative methods, such as
GANs[1, 16, 17], VAESs[18] and autoregressive models[19]
have demonstrated capabilities of generating high-quality
image and audio samples. Interested readers can refer to for a
thorough review of other generative methods for multi-modal
image synthesis and editing[20].

III. METHODS

A. Background: Diffusion Models

A diffusion model is a parameterized Markov chain trained
using variational inference to produce samples matching the
data after finite time. The forward diffusion process is a Markov
chain that gradually adds noise to the data in the opposite
direction of sampling until signal is destroyed, and transitions
of this chain are learned to reverse a diffusion process[6]. Song
et al. [21] defined the stochastic differential equation (SDE) for



the data noising process (i.e. forward SDE) x(t), t € [0,T],
x(t) € R4Vt. The variance preserving (VP) form of the SDE is
as the following

__BW®

dx = —=—=xdt + JB(®)dw (1)
where B(t) : R = R > 0 is the noise schedule of the process,
and w the standard d dimensional Wiener process.

Discretizing SDE using the Euler-Maruyama method yields

x = J1-Bxy +Beziy,t =1,..,T )

where z,_, ~ N (0,1) are i.i.d. Gaussian random variables in
each step. Equation (2) can be written as a conditional
distribution that does not depend on step t — 1 but only on the
very first step t = 0:

x, = J@Gxo+1— @z (3)
Be» @ =T, a;, andz ~ NV (0,1)

Poof of equation (3) By math induction, firstly we prove
the base case t = 1 is true given equation (2):

X = /1= B1xo ++/ P12

=ﬂ&1x0 + 1 _&120

=4I&1XO+ 1_&1Z
Then we prove that if equation (3) holds for any case t - 1,
then it must hold for the next case t as the following.
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which is equivalent to
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This concludes the proof.
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B. Unconditional Sampling with Diffusion Models

The image generation problem can be considered as
gradually removing noise from a noisy observation x, to
recover X through the reverse of the nosing diffusion process
(i.e. reverse SDE). The discrete reverse SDE takes the form of
the following[6]

Xe—1 = \/%“—E (xt - \/llieo(xt , t)) 4

where €4 is a function approximator intended to predict the
noise € from x,. Equivalent process can be achieved with a
score-predicting network sg instead of a noise-predicting

network €y, given the relation sg(x; ,t) = — ol t)

Substituting this into equation (4):
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Equation (5) can be split into two equations to explicitly include
the predicted clean image X, , that is
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This concludes the proof.

With that, an unconditional image generation procedure can
be implemented with a score-predicting function by reverse
SDE, as summarized by the pseudocode below.

DDPM

xr ~N(0,1)
fort=T,..,1do
Zz~N(0,Dift>1,elsez=0

Xy = J%(xt + (1 — a)se(x,, t))
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end for
return x,

Alternatively, the DPS method uses the approximate
gradient of the log likelihood: V., logp(y|x,) =~
V., logp(¥|Xo) , where the latter is analytically tractable, as
the measurement distribution is given. It is worth noting that,
while this paper focuses on solving linear inverse problems,
DPS is also capable of tackling more general inverse problems,
including nonlinear cases, which ScoreALD and many other
early posterior sampling approaches cannot handle[14]. In the
experimental section, we implemented ScoreALD and DPS
using a pretrained score-predicting function, and the sampling
loops are described below.

ScoreALD

C. Posterior Sampling with Diffusion Models

In inverse problems, the aim is to recover an unknown
sample x € R™ , assuming known measurements y € R™ and
a forward model A

y=AXx)+ z,z~N(0,1,) (®)

Looking through the lens of Bayesian inference, given
measurements y, the goal can be interpreted as generating
plausible reconstructions by sampling from the posterior
distribution p(x|y), where p(x|y) < p(y|x)p(x) as stated by
the Bayes' rule. Diffusion models can be utilized as priors for
p(x) to generate reconstructions by sampling from the
posterior distribution. Considering the continuous reverse SDE,
the reverse diffusion sampler for sampling from the posterior
distribution can be arranged as[21]

dx = [~ @x — B®)(Vx, logp (x,) + Vo, logp, (ylx,))]dt
+ JB(t)dw

(€))

The score function term V,, logp;(x,) can be computed

using a pre-trained score-predicting function sp(x;,t) .

However, the likelihood term V, logp.(y|x,) is analytically

intractable due to their dependence on time t. Various

approximations have been explored by the community to
circumvent the intractability of posterior sampling[22].

As one of the first proposed methods for solving linear
inverse problems with diffusion models, ScoreALD method
approximates the likelihood gradient as V., logp(y|x,) =
Al (y-Axy)

v where {y,}f_, are hyperparameters.
t
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Single-Step Denoising

In this section, the diffusion model pretrained on the FFHQ-
256 dataset was utilized to perform single-step denoising. Noisy
images (x;) were generated by adding i.i.d. Gaussian noise
z ~NV(0, 1) to the clean test image (X,), following the forward
process described by equation (3) with the noise schedule S:.
Images at different noise levels were obtained by selecting
various diffusion steps t in the forward noising process. The
predicted denoised image (X,) was obtained by applying the
reverse process to the noisy image (X;) using the single-step



model prediction method described in equation (6), with the
pretrained score predictor Sg.

Fig. 1 illustrates the results of denoising a test human face
image at three progressively increasing noise levels (t =50, t =
100, and t = 200). PSNR and LPIPS were computed as
quantitative metrics to assess the quality of the denoised images.
Although PSNR gradually decreases as the noise level increases,
it retains a reasonable value of 29.6 dB even at the highest noise
level. Conversely, LPIPS increases from 0.0549 to 0.1531 as the
noise level rises from t = 50 to t = 200, reflecting a decline in
perceptual similarity relative to the ground truth as the input
starts with more noise and the denoising process involves more
reverse diffusion steps.

Noisy Image

Denoised Image

PSNR/LPIPS:
35.4/0.0549

PSNR/LPIPS:
32.7/0.0957

t=100

PSNR/LPIPS:

=200 29.6/0.1531

Fig. 1 Single-step denoising at different noise levels

Furthermore, this denoising method was evaluated on a non-
human face input image (Fig. 2). The model exhibited plausible
performance on this test image of a red panda, achieving a
relatively high PSNR of 29.2 dB and a low LPIPS of 0.2123.
This outcome is likely due to the red panda face shares plenty
structural similarities to the human faces on which the diffusion
model was trained. However, when compared to the denoised
human face image at the same input noise level (t=100) the
denoised red panda image demonstrates a lower PSNR and a
higher LPIPS, suggesting the model indeed performs worse as
the input image deviates from the distribution of the model’s
training data.

Ground Truth

Noisy Image Denoised Image

t=100 PSNR/LPIPS: 29.2/0.2123

Fig. 2 Single-step denoising on a non-human face noisy image

B. Unconditional Image Generation

Unconditional imaging generation with the pretrained
diffusion model was demonstrated in this section, using the
DDPM procedure. The process began by initializing the image
as pure Gaussian random noise, which was then iteratively
denoised according to a parameter schedule over 1,000 steps.
Three images (x;-,) were generated using this approach and are
presented in Fig. 3 alongside partially denoised intermediate
results at 700 (X;=300) and 950 (x;—50) steps. The generated
images are all identifiable as photorealistic human portraits;
however, certain imperfections are evident. For instance, the
first image contains an arbitrary object in the foreground.
Additionally, the third image is oversaturated, resulting in the

loss of fine details, particularly the hairs.

t=990

N - .

“ 4

Fig. 3 Unconditional image generation

C. Solving Inverse Problems

Here we explored the applications of the diffusion model in
solving two inverse problems: image inpainting and
deconvolution with SDEdit, ScoreALD and DPS.

1) SDEdit

SDEdit is an image synthesis and editing framework based
on stochastic differential equations developed by Meng et
al.[12]. In this implementation of SDEdit, we first add noise to
the input, then subsequently denoises the resulting partially
noised version of the input image through the DDPM denoising
procedure to enhance its realism.

Fig. 4, 5 exhibit the results of applying SDEdit to two tasks:
inpainting an image partially obscured by a box mask and
deblurring an image with by Gaussian blur. For each task, three
noise levels (t = 250, t = 500, and t = 750) were evaluated to



analyze the impact of the noise magnitude on the overall quality
of the reconstructed images.
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Fig. 4 Box-type inpainting with SDEdit at three noise levels
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Fig. 5 Gaussian deblurring with SDEdit at three noise levels

The results reveal a clear trend: as more noise is added to the
input image and additional reverse diffusion steps are taken
during denoising, more artifacts from the original input are
removed. However, this also leads to the erosion of other
features, resulting in outcomes that are less faithful to the input
image. As shown in Fig. 4, 5, when the noise level is insufficient
(t =250) to obscure the artifacts in the input, the inpainting or

deblurring task essentially "fails", as the output images retain
significant traces of the original mask or blur. On the other
extreme of the spectrum, when an excessive amount of noise is
added during initialization (¢ = 750), the noisy input lacks
sufficient information about the original image, rendering the
denoising process effectively "unconditional” and producing
outputs that no longer resemble the input images.

Among the three noise levels evaluated, t = 500 yields the
best results for both inpainting and devolution tasks, as judged
by parametric metrics such as PSNR and LPIPS, as well as
qualitative assessments. Nonetheless, even the results at ¢ =
500 are suboptimal, highlighting the inherent difficulty of
balancing restoration and faithfulness in a controllable manner
in this approach. As demonstrated in the following section,
posterior sampling approaches offer more effective solutions to
these inverse problems.

2) ScoreALD and DPS

In this section, we experiment with two posterior sampling
approaches for solving the inpainting and linear deblurring
inverse problems, namely ScoreALD and DPS.

Fig. 6 summarizes the results of applying ScoreALD and
DPS to box-type inpainting and Gaussian deblurring tasks. For
comparison, the results from the SDEdit method at noise level
t = 500, discussed in the previous section, are also included.
Additionally, we applied these three diffusion-based
approaches to the random-type inpainting task. Detailed anneal
and scale parameters used for each task can be found in the
code.

Ground Truth
=

Input Image SDEdit SocreALD DPS

N

Gaussian
Deconvolution

PSNR/LPIPS: 25.2/0.0984 PSNR/LPIPS: 27.3/0.0667

Inpainting
(box mask)

PSNR/LPIPS: 20.9/0.1958 PSNR/LPIPS: 21.7/0.4199 PSNR/LPIPS: 35.2/0.0204

Inpainting
(random mask)

PSNR/LPIPS: 15.1/0.3142

PSNR/LPIPS: 20.8/0.2533

PSNR/LPIPS: 16.0/0.2489

Fig. 6 Box-/random-type inpainting and Gaussian deblurring
with SDEdit, ScoreALD, and DPS



As shown in Fig. 6, both posterior sampling methods
significantly outperform SDEdit across all tasks, achieving
consistently higher PSNR and lower LPIPS values. Between
theses posterior sampling approaches, DPS demonstrates
superior performance in terms of parametric metrics and
qualitative evaluation, with the most notable improvements
observed in the box inpainting task.

While both ScoreALD and DPS produce high-quality
outputs for box-type inpainting and Gaussian deblurring tasks,
neither method achieves satisfactory results for random-type
inpainting using the current anneal and scale parameters.
Specifically, they fail to achieve both sufficiently high PSNR
and low LPIPS simultaneously. Improved outcomes are
anticipated with further fine-tuning of these parameters.

V. CONCLUSION

In this project, we have implemented a single-step method
for image denoising using a pretrained score predictor,
achieving high-quality denoised outputs for moderate to high
noise levels. However, as expected, the performance of the
diffusion-based denoiser deteriorated when applied to images
outside the model's training distribution. Images generated using
the DDPM framework were generally of good quality, although
occasional imperfections in composition or saturation were
observed. For image inpainting and deblurring tasks, posterior
sampling methods such as ScoreALD and DPS significantly
outperformed the more basic SDEdit approach, consistently
achieving higher PSNR and lower LPIPS values. Notably, DPS
demonstrated superior performance, particularly in box-type
inpainting scenarios. While SDEdit requires careful selection of
noise levels to effectively perturb the input images while
maintaining a certain level of faithfulness to other general
features, the posterior sampling methods provided more robust
and effective solutions to these inverse problems, exemplifying
the modern advancements enabled by generative modeling.
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