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Phase Retrieval from Point Spread Function with
Deep Learning Compared to Machine Learning

Wanting Xie

Abstract—Phase retrieval is a crucial challenge in various optics and imaging systems, enabling the recovery of phase information
from intensity measurements. This process is vital in fields such as microscopy, holography, and astronomy. Traditional phase retrieval
methods, including iterative algorithms like the Gerchberg-Saxton and Fienup algorithms, often depend heavily on prior system
knowledge and can be computationally intensive and error-prone. Recent advancements in deep learning (DL) and machine learning
(ML) have introduced innovative approaches that address phase retrieval problems with greater efficiency and accuracy. This project
aims to evaluate the effectiveness of a deep learning-based phase retrieval method using Point Spread Function (PSF) and compare
its performance to a machine learning-based approach.

Index Terms—Phase Retrieval, Point Spread Function, Zernike Polynomials, Machine Learning, Deep Learning
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1 INTRODUCTION

PHASE retrieval is a fundamental problem in many areas
of optics and imaging systems. It allows the recovery

of phase information from intensity measurements, which
is crucial in fields such as microscopy, holography, and
astronomy. Traditional phase retrieval methods, such as
iterative algorithms, rely heavily on prior knowledge of
the system’s characteristics and may be computationally
expensive or prone to errors. With deep learning (DL) and
machine learning (ML) techniques, there has been a surge
in novel approaches to solve phase retrieval problems more
efficiently and accurately. This project investigate the effec-
tiveness of deep learning-based phase retrieval method us-
ing PSF and compare the performance to machine learning-
based approach.

2 RELATED WORK

Many algorithms, such as the Gerchberg-Saxton and Fienup
algorithms, have been developed over the years to per-
form phase retrieval from intensity measurements. [1] These
methods require multiple intensity measurements at differ-
ent object-plane positions or various angles, and they are
often iterative, requiring high computational power.
Recent advancements in deep learning have led to the
development of neural networks for phase retrieval. Meth-
ods like convolutional neural networks (CNNs) and U-Net
architectures have shown promising results in recovering
phase from noisy and sparse data. [2], [3]
Machine learning techniques have also been explored for
phase retrieval tasks. These methods, however, require care-
ful feature extraction and may not perform as well as deep
learning models when it comes to handling complex and
large-scale data. [4]

3 PROPOSED METHOD

3.1 Basics
3.1.1 Point spread function
Point spread function (PSF) is a crucial concept in optics
that describes how a point source of light is represented in

an imaging system. Essentially, it measures the response of
an imaging system to a point source or point object. It is a
measure of intensity as a function of the x and y coordinates,
with the optical path typically along the z-axis. In an ideal
(aberration free) optical system, the PSF (Fig.1) would be
a sharp peak at the focal point, indicating perfect focus.
However, in real (with aberration) systems, various errors
such as aberrations can cause the PSF (Fig.2) to spread,
resulting in a less sharp image. PSF can be expressed as
a function of apodization A and wavefront error ϕ.

PSF = |F [A(u, v)eiϕ(u,v)]|2 (1)

Fig. 1. PSF (Aberration Free)

The through-focus PSF, as illustrated in Fig.3, represents
the PSF at various positions along the optical axis. The
example provided shows the PSF ranging from -0.5 to +0.5
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Fig. 2. PSF (with Aberration)

wavelengths (Waves) of defocus. It is evident that the PSF
at defocused positions is more widely spread and contains
a richer set of information, which is beneficial for model
training. Previous studies have indicated that a focused PSF
does not offer sufficient information to accurately estimate
aberrations. In contrast, introducing defocus simplifies the
process of determining aberration coefficients. These studies
have also found that for identifying small aberrations, with
an absolute value of less than 0.5 Waves, the optimal defocus
range is between 0.1 and 0.2 Waves. This range provides
the best balance, ensuring that the defocused PSF contains
enough detail to facilitate precise aberration estimation.
The broader spread of the defocused PSF captures more
intricate details, making it a valuable asset in the training
and refinement of models aimed at aberration correction.
[5]

Fig. 3. Through-Focus PSF (-0.5 to +0.5 Wave)

3.1.2 Wavefront Error

Wavefront error (WFE) is a measure of the deviation of
an optical wavefront from its ideal shape. In an ideal op-
tical system, light waves would form a perfect spherical
wavefront as they converge to a focal point. However, due
to imperfections and aberrations in the optical system, the
actual wavefront deviates from this ideal shape. (Fig.4)

Fig. 4. Wavefront Error [6]

3.1.3 Zernike polynomials

Zernike polynomials are a sequence of polynomials that are
orthogonal on the unit disk. Named after optical physicist
Frits Zernike, laureate of the 1953 Nobel Prize in Physics and
the inventor of phase-contrast microscopy. Zernike polyno-
mials can be used to describe wavefront aberrations in an
optical system. [7] Here we use up to n=36. (Fig. 5)

ϕ(u, v) =
n∑

n=1

ciZi(u, v) (2)

Fig. 5. Zernike Polynomials
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3.2 Method

3.2.1 Optics Parameters

The following are the optical parameters used for the Point
Spread Function (PSF) calculation. The wavelength of light
utilized in this study is 550 nm. The numerical aperture
(NA) of the optical system is set to 0.65, as illustrated in
Fig.6. Based on these parameters, the pixel size is calculated
using the formula 0.1×wavelength/NA, resulting in a pixel
size of approximately 84.6 nm. Additionally, the dimensions
of the image are specified, with both the width and height
measuring 1025 pixels. These parameters are crucial for
accurately modeling the PSF and ensuring precise image
reconstruction.

Fig. 6. Numerical Aperture (NA)

3.2.2 Generate Training Samples

In this study, a total of 100 and 500 samples of WFEs
with RMS value within 70 miliwavelengths (mWaves) were
randomly generated to simulate various optical aberrations.
I chose 70 mWaves because he image quality is not sensibly
degraded when the total wavefront error does not exceed
70 mWaves RMS. For each WFE sample, PSF images were
generated across a specified focus range, spanning from -
500 to +500 mWaves in increments of 50 mWaves. This
comprehensive range ensures a detailed analysis of the
PSF variations due to different WFEs. The subsequent step
involved flattening each generated PSF image and normal-
izing it by the peak value of the aberration-free PSFs. This
normalization process is crucial for accurately comparing
the PSF images and assessing the impact of the WFEs. The
detailed procedure and results are illustrated in Fig.7.

Fig. 7. Training Samples

3.2.3 Model Training

Two distinct methods were evaluated in this study. For the
Deep Learning approach, various algorithms were explored
to determine their effectiveness. Specifically, the Machine
Learning method employed Linear Regression, while the
Deep Learning method utilized a Fully Connected Neural
Network.

1) Machine Learning (ML): Linear Regression (LR)
2) Deep Learning (DL): Fully Connected Neural Net-

work (FCNN)

Deep Learning model was tuned to optimize the perfor-
mance. Here are some key parameters. Each of these was
assessed to identify the most suitable one for the given task.

• Hyperparameter Tuning

– Learning Rate
– Batch Size
– Number of Epochs

• Model Architecture

– Layer Configuration
– Activation Functions
– Dropout Rate

• Optimization Algorithms

– Adam
– AdamW
– SGD
– RMSprop
– Adagrad
– Adadelta

3.2.4 Testing

A total of 100 test WFEs, which serve as the ground truth,
were generated along with their corresponding PSFs. Using
these PSFs, the trained model was employed to retrieve the
WFEs. The retrieved WFEs were then meticulously com-
pared with the ground truth to evaluate the model’s accu-
racy and performance. This comparison provided valuable
insights into the model’s ability to accurately reconstruct the
wavefront errors from the given point spread functions. The
modeling error is defined by

RSS Error =

√√√√ n∑
n=1

|cipredict − citruth
|2 (3)

4 EXPERIMENTAL RESULTS

4.1 Machine Learning

Initially, I tested the linear regression model to evaluate
its performance. The model’s error, when compared to the
ground truth, was found to be 6.8 mWaves. The results,
including both the predicted and true Zernike coefficients,
are illustrated in Fig.8 and Fig.9. To ensure a straightforward
comparison, I will apply the same test example to the
subsequent models and algorithms.
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Fig. 8. One Test Example of Linear Regression - Zernike Coefficients

4.2 Deep Learning Model Tuning
Subsequently, I conducted tests on various deep learning
algorithms, each configured with two layers. The models
were trained using a dataset comprising 100 samples. Upon
evaluating the results, it was evident that the Adam op-
timizer produced predictions that were the closest to the
ground truth, outperforming the other algorithms tested.

In my experiments with the Adam optimization method,
I explored the effects of increasing both the number of
layers in the model and the number of training samples. The
detailed results of these experiments are presented in Table
1. Interestingly, the data indicates that adding more layers to
the model actually led to a decline in performance, yielding
worse results compared to the original configuration. On
the other hand, increasing the number of training samples
resulted in a slight improvement in the model’s accuracy,
suggesting that while more data can enhance performance,
the model’s architecture also plays a crucial role in achieving
optimal results.

TABLE 1
Compare Number of Layers and Training Samples for FCNN Adam

Number of Layers Number of Training Samples Error (mWaves)

Two 100 34.84
Four 100 46.80
Two 500 32.12
Four 500 46.29

Choosing the right activation function is crucial for the
performance of a deep learning model, as it directly impacts
the model’s ability to learn and generalize from data. Several
commonly used activation functions were tested with the
Adam optimization method to evaluate their effectiveness.
ReLU (Rectified Linear Unit) is widely used in hidden layers
of neural networks due to its simplicity and effectiveness
in mitigating the vanishing gradient problem, which can
hinder the training of deep networks. The Sigmoid function,
often employed in the output layer for binary classification
problems, can suffer from vanishing gradients, making it
less effective for deeper networks. Tanh (Hyperbolic Tan-

gent) is similar to Sigmoid but outputs values between -1
and 1, making it zero-centered and potentially more effec-
tive in certain scenarios. Leaky ReLU addresses the ”dying
ReLU” problem by allowing a small, non-zero gradient
when the unit is not active, thus ensuring that neurons
do not become inactive during training. Softmax is used
in the output layer for multi-class classification problems
to produce a probability distribution over multiple classes,
making it essential for tasks involving multiple categories.
Swish, a newer activation function, has shown to outper-
form ReLU in some cases, particularly in deeper networks,
due to its smooth and non-monotonic nature. Lastly, ELU
(Exponential Linear Unit) helps to mitigate the vanishing
gradient problem and can lead to faster learning by allowing
the model to converge more quickly. Each of these activation
functions has its strengths and weaknesses, and the choice of
which to use often depends on the specific characteristics of
the data and the architecture of the model. The experimental
results indicate that the Tanh activation function yields
the lowest error rate, as illustrated in Fig.11. This finding
highlights the effectiveness of Tanh in minimizing errors
compared to other activation functions tested. Furthermore,
it was observed that increasing the number of layers in
the neural network did not contribute to any significant
improvement in performance. Despite the expectation that
additional layers might enhance the model’s accuracy, the
results suggest that a deeper network does not necessarily
lead to better outcomes in this particular case.

Based on the results of the tuning tests, it was deter-
mined that using 500 training samples, a neural network
with two layers, the Tanh activation function, and the Adam
optimization algorithm collectively provided the best over-
all performance. This combination of parameters was found
to be the most effective in optimizing the model’s accuracy
and efficiency. The detailed outcomes of one specific test
example, which illustrate the model’s performance under
these conditions, are presented in Fig.12 and Fig.13. The RSS
error is 12.1 mWaves.

4.3 Machine Learning vs. Deep Learning Comparison

Figure 14 illustrates the RSS error distribution across
100 tests. The ML model achieves an average error of
4.4 mWaves with a standard deviation of 4.1 mWaves,
whereas the DL model has a higher average error of 11.6
mWaves with a standard deviation of 4.6 mWaves. The best-
performing DL result among the 100 tests still yields an
error of 7 mWaves, which remains significantly worse than
ML. In terms of computational efficiency, training the ML
model on 500 samples takes only 6 seconds, compared to
781 seconds for the DL model. Overall, ML outperforms DL
in both accuracy and computational efficiency.

Besides the possibility that the DL model is not tuned
to its best, there are several reasons why linear regression
might outperform a fully connected neural network in cer-
tain scenarios.

• Linear regression is a simpler model with fewer
parameters, which makes it less prone to overfitting,
especially when dealing with small datasets. In con-
trast, fully connected neural networks have many
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Fig. 9. One Test Example of Linear Regression - PSF

Fig. 10. Test Results of Different DL Algorithms

Fig. 11. Test Results of Different Activation Functions

Fig. 12. One Test Example of Deep Learning - Zernike Coefficients

parameters and can easily overfit the training data
if not properly regularized.

• The loss surface for linear regression is convex,
meaning it has a single global minimum. This makes
it easier to find the optimal solution using methods
like ordinary least squares. On the other hand, the
loss surface for neural networks is non-convex, with
many local minima, making optimization more chal-
lenging.

• Data Requirements: Neural networks generally re-
quire large amounts of data to perform well. If the
dataset is small or not sufficiently diverse, a simpler
model like linear regression might yield better results
because it can generalize better from limited data.

• Linear regression is computationally less intensive
compared to training a deep neural network. This
can be an advantage when computational resources
are limited or when quick results are needed.
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Fig. 13. One Test Example of Deep Learning - PSF

Fig. 14. RSS Error Distribution of 100 Tests: Machine Learning vs. Deep
Learning

While neural networks are powerful tools for capturing
complex patterns, linear regression can be more effective
in scenarios where the data is limited, the relationship
is linear, or computational efficiency is a priority. Deep
learning remains highly promising, as models can be further
optimized through tuning. Additionally, there are various
other deep learning techniques, such as Convolutional Neu-
ral Networks (CNNs), that can be explored in the future to
enhance performance.

5 CONCLUSION

In conclusion, this study reveals that while deep learning
techniques have shown promise in various applications,
they did not outperform traditional machine learning meth-
ods for phase retrieval in this particular case. The deep
learning models, despite being optimized with the Point

Spread Function (PSF) and various neural network architec-
tures, yielded higher errors compared to the simpler linear
regression model. This suggests that for the given dataset
and problem complexity, the linear regression approach
was more effective, likely due to its simplicity and lower
risk of overfitting. The findings underscore the importance
of selecting the appropriate model based on the specific
characteristics of the data and the problem at hand. While
deep learning holds potential for future improvements,
traditional machine learning methods remain a robust and
reliable choice for phase retrieval tasks in this study.
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