
1

Inverse problems with Pretrained Diffusion
models
Venkat S. Rao

Abstract—Study use cases of diffusion models. Use 5 test cases to quantitatively and qualitatively understand where diffusion models
can be used.

Index Terms—Computational Photography, Diffusion, Deep learning, inpainting, denoising, deconvolution

✦

1 INTRODUCTION

SOlving Inverse problems such as deconvolution and
inpainting have many applications in computational

photography. Deconvolution can be used recover blurry
images caused by camera or subject movement. Inpainting
can be used to remove unwanted objects or soviet leaders
who have lost favor with the state.

Diffusion models can be used to denoise an image. We
can use their noise prediction outputs as priors to solve
inverse problems. As these diffusion models are the state
of the art, we want to gain a better understanding of their
applications. It will be great to understand where they are
useful.

2 RELATED WORK

For inpainting and deconvolution, we have many methods
unrelated to Diffusion and also many variations of diffusion
that can be used.

2.1 Traditional Computational Photography Methods
Inpainting can be performed via traditional computational
photography using algorithms such as the Fast Marching
method [1] and another method based on fluid dynamics
and partial differential equations [2].

2.2 GANs and Variational Autoencoders
GANs and Variational Autoencoders enjoyed the spotlight
prior to diffusion models for generating synthetic images.
Diffusion models perform better than GANs since they more
stable during training. And they are better than Variational
autoencoders since they produce more real and less blurry
images.

2.3 Diffusion
Diffusion models generate images iteratively from noise.
They transform an image into noise through a forward
diffusion process and then learn to reverse this process to
generate new, high-quality images from noise.

• M. Shell is with the Department of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, 30332.
E-mail: see http://www.michaelshell.org/contact.html

• J. Doe is with Anonymous University.

Fig. 1. DDPM process

2.4 DDPM

Denoising Diffusion Probabilistic Models(DDPM) [3] grad-
ually add noise to an image during training (a forward
diffusion process) and then learning to reverse this process
(a denoising process) to generate new images from pure
noise. This markov chain, see 1 uses a controlled noise
schedule. This method provided state of the art results when
released in 2020.

DDPMs use a Deep learning models with a Unet archi-
tecture [4] to predict noise. But any model can be used to
provide a noise prediction.

2.4.1 Langevin dynamics
Langevin dynamics based sampling adds a noise term when
sampling a prior and this ensures unique solutions for each
inference.

2.5 SDEdit

Stochastic Differential Editing [5] provides a way to balance
generating a real looking image while the maintaining fi-
delity with the original ground truth image. The amount of
noise applied, as measure in timesteps, is a hyperparameter
that can be tuned.

2.6 ScoreALD

ScoreALD [6] was initially created for MRI images to de-
crease radiation exposure for patients. It could interpolate
images based on input data. It adds a condition based
on the gradient of the difference between a prior and the
measurement. It scales this prior by annealed Langevin
Dynamics factor.

2.6.1 Annealed Langevin dynamics
Langevin dynamics models often have trouble converging.
ScoreALD introduces an annealing factor to the scaling



2

term. The annealing factor decreases as the timesteps in-
crease. In the paper, the authors were able to get better
results using this method.

2.7 Diffusion Posterior Sampling(DPS)

Diffusion Posterior Sampling(DPS) [7] modifies the stan-
dard diffusion sampling process by conditioning on the
likelihood of the observed data, ensuring that samples
remain consistent with given measurements. This is done
by adjusting the reverse diffusion process to account for
the posterior distribution. Additionally, it uses a predicted
non noisy initial image to condition rather than the current
posterior.

3 METHODS

We used five different methods to understand various meth-
ods of applying diffusion models to inverse problems.

3.1 Single-Pass Image Denoising

We look at multiple images for three inverse tasks: deconvo-
lution, inpainting with random masks applied to the whole
image and inpainting a random mask.

Since we can choose how large a timestep we can
take, we compare all three methods using three different
timesteps.

3.2 Unconditional Generation with DDPM

This is the first method, where we use a iterative markov
chain for denoising. A basic DDPM implementation is used
to generate images.

We explore unconditional image generation with DDPM.
However, since the model was trained on a dataset of faces,
it will only generate faces.

We judge the image qualitatively, for how close the gen-
erated person looks real. We look for artifacts that indicate
the image is fake.

3.3 SDEdit

Since SDEdit allows us to to choose the amount of noise
as a hyperparameter, we look at image quality at multiple
timesteps and judge how realistic a generated image looks.
We also compare time to generations. Additionally, we want
to ensure all added artifacts, such as a mask, have been
removed.

3.4 Inverse Problems - ScoreALD vs DPS

We compare ScoreALD and DPS to judge how they perform.
We compare them on the same three tasks as SDEdit: decon-
volution, inpainting with box masks and random masks.

For DPS, we can also tune the scale parameter to find the
best scaling factor.

Fig. 2. Single-Pass Image denoising

Fig. 3. Unconditional Generation

4 EXPERIMENTAL RESULTS

4.1 Single-Pass Image Denoising
See figure 2.

The less noise that is added, the easier it is to recover the
original image. As we go past 500 timesteps, the generated
image loses any fidelity to the ground truth.

Quantitatively, we see similar results. If we went past 500
timestamps, the image would no longer have any resem-
blance to the ground truth and provide results with PSNRs
less than 20.

At t=400, we can see the image has quite a lot of noise,
but can still recover the original.

4.2 Unconditional Generation with DDPM
In figure 3, we see three images that were unconditionally
generated. All faces could be real people.

4.3 SDEdit
4.3.1 Deconvolution
In figure 4 we can recover a deconvolved image for a
timestep between 200 and 500.

Even at timestep 200, this process cannot reproduce a
great image. At 900, a completely new person is generated.



3

Fig. 4. Deconvolution with SDEdit

4.3.2 Inpainting - Mask
In figure 5 we see SDEdit is not a great method to re-
cover masked areas at any timesteps. Even at low and mid
timesteps, the mask is not removed. At timestep 500, the
mask is incorporated into the face and the generated image
look like cyborg child.

4.3.3 Inpainting - Random
In figure 6 we recover cartoonish images at timesteps less
than 500. At timestep 900, the recovered image has no
relation to the Ground truth.

Even at timestep 200, the process cannot reproduce a
great image. Given the entire image was masked we maybe
should not expect great results.

4.4 Inverse Problems - ScoreALD vs DPS
4.4.1 Deconvolution
In Figure 7 ScoreALD produces a very saturated image. DPS
produces a high quality reproduction.

The PSNR score of each is pretty close but the LPIPS,
where lower is better, is almost half for DPS.

4.4.2 Inpainting - Mask
In Figure 8 ScoreALD has produced an oversaturated image
with a weird looking eye. DPS, on the other hand, seems to
be have done well on this task.

Qualitatively, DPS image is very close to ground truth,
but we can see a different right ear ring compared to the
ground truth.

PSNR is 22 for ScoreALD and 35 for DPS. This is the
highest PNSR score for any of the methods.

Fig. 5. Inpainting- Box mask with SDEdit

Fig. 6. Inpainting - Random mask with SDEdit



4

Fig. 7. Deconvolution

Fig. 8. Mask Inpainting

4.4.3 Inpainting - Random
In Figure 9 we see both methods can somewhat recreate
the ground truth. Both methods seem to have recreated a
different child. DPS performs much worse than ScoreALD
for this task.

PSNR is 20 for ScoreALD but qualitatively the algorithm
has performed much worse.

5 DISCUSSION

For the inpainting task with a box mask, all three methods,
SDEdit, ScoreALD and DPS, change the unmasked portion
of the image changes. This is probably unacceptable in a
commercial product like Lightroom.

In addition to the qualitative and quantitative results,
running these models takes quite a long time. It also requires
GPUs to run.

Fig. 9. Random Inpainting

6 FUTURE WORK

Some other diffusion methodologies like stable diffusion
[8] and diffusion model that replace Unet with a Vision
transformer [9] should also be looked at for these tasks.

Another idea might be to combine a traditional compu-
tational photography method with diffusion.

7 CONCLUSION

Qualitatively, it seems all methods cannot impaint or decon-
volve images without issues.

Quantitatively, DPS has the best scores and future work
should focus on improving it.

The methods explored in this paper do not perform well
enough given heavy resource usage. We also need to study
different and follow on methods.

ACKNOWLEDGMENTS

The author would like to thank the EE367 staff and espe-
cially Axel Levy for providing support while working on
this project.

REFERENCES

[1] A. Telea, “An image inpainting technique based on the fast march-
ing method,” Journal of graphics tools, vol. 9, no. 1, pp. 23–34, 2004.

[2] M. Ebrahimi and E. Lunasin, “The navier–stokes–voight model for
image inpainting,” The IMA Journal of Applied Mathematics, vol. 78,
no. 5, pp. 869–894, 2013.

[3] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical image
computing and computer-assisted intervention–MICCAI 2015: 18th in-
ternational conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18. Springer, 2015, pp. 234–241.

[5] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon,
“Sdedit: Guided image synthesis and editing with stochastic differ-
ential equations,” arXiv preprint arXiv:2108.01073, 2021.



5

[6] A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir,
“Robust compressed sensing mri with deep generative priors,”
Advances in Neural Information Processing Systems, vol. 34, pp. 14 938–
14 954, 2021.

[7] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye,
“Diffusion posterior sampling for general noisy inverse problems,”
arXiv preprint arXiv:2209.14687, 2022.

[8] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 10 684–10 695.

[9] W. Peebles and S. Xie, “Scalable diffusion models with trans-
formers,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2023, pp. 4195–4205.

APPENDIX

.1 Task 1.1
xt =

√
1− βtxt−1 +

√
βtz

αt = 1− βt

ᾱt = Πat

xt−1 =
√
1− βt−1xt−2 +

√
βt−1z

xt =
√
1− βt(

√
1− βt−1xt−2 +

√
βt−1z) +

√
βtz

xt =
√
1− βt

√
1− βt−1xt−2 +

√
1− βt

√
βt−1z +

√
βtz

xt =
√
αt
√
αt−1xt−2 +

√
1− βt

√
βt−1z +

√
βtz

If we recursively replace the xt−2 term, we would get:

xt =
√
ᾱtx0 +

√
1− ᾱtz

.2 Task 1.2

x̂0 =
1√
ᾱt

(xt + (1− ᾱt)sθ)

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
αt−1(1− αt)

1− ᾱt
x̂0

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt+

√
αt−1(1− αt)

1− ᾱt
(

1√
ᾱt

(xt+(1−ᾱt)sθ))

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt+

√
αt−1(1− αt)

1− ᾱt
√
ᾱt

xt+

√
αt−1(1− αt)

1− ᾱt
√
ᾱt

(1−ᾱt)sθ

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt+

√
αt−1(1− αt)

1− ᾱt
√
ᾱt

xt+

√
αt−1(1− αt)

1− ᾱt
√
ᾱt

(1−ᾱt)sθ

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

(1− αt)

(1− ᾱt)
√
αt

xt +
(1− αt)√

αt
sθ

xt−1 = (αt(1− ᾱt−1) + 1− αt)
xt

(1− ᾱt)
√
αt

+
(1− αt)√

αt
sθ

xt−1 = (αt − αtᾱt−1 + 1− αt)
xt

(1− ᾱt)
√
αt

+
(1− αt)√

αt
sθ

xt−1 = (1− ᾱ)
xt

(1− ᾱt)
√
αt

+
(1− αt)√

αt
sθ

xt−1 =
xt√
αt

+
(1− αt)√

αt
sθ

xt−1 =
1

√
αt

(xt + (1− αt)sθ)



6

.3 Task 1.3
Forward diffusion

xt =
√
ᾱtX0 +

√
1− ᾱtϵθ

Tweedie’s formula

X0 =
1√
ᾱt

(xt + (1− ᾱt)sθ)

xt =
√
ᾱt(

1√
ᾱt

(xt + (1− ᾱt)sθ)) +
√
1− ᾱtϵθ

xt = ((xt + (1− ᾱt)sθ)) +
√
1− ᾱtϵθ

−(1− ᾱt)sθ =
√
1− ᾱtϵθ

sθ = −
√
1− ᾱt

(1− ᾱt)
ϵθ

Prove

xt−1 =
1

√
αt

(xt+(1−αt)sθ) ⇔ xt−1 =
1

√
αt

(xt+
1− αt√
1− ᾱt

)ϵθ)

(1− αt)sθ ⇔ − 1− αt√
1− ᾱt

ϵθ

−(1− αt)

√
1− ᾱt

(1− ᾱt)
ϵθ ⇔ − 1− αt√

1− ᾱt
ϵθ

− 1− αt√
1− ᾱt

ϵθ ⇔ − 1− αt√
1− ᾱt

ϵθ


