Analysis of Modern Diffusion Techniques for
Image Reconstruction

Stephen Zhu

Abstract—Machine learning models have been helpful in the task of solving inverse problems, as they can often learn to estimate
inverses from data with varying noise levels and sometimes unknown forward functions. One type of model that has shown promise in
recent years is diffusion models. This project focuses on using a pre-trained diffusion model, along with three inverse problem

algorithms, to attempt image reconstruction.

Index Terms—Computational Photography, Diffusion Models, Signal Processing

1 INTRODUCTION

NVERSE problems in image processing can essentially be

defined as follows: given an incomplete image, how can
we obtain the original image? When we take a picture,
there is always some form of noise that appears in the
images that is usually modeled as Gaussian or Poisson noise
[1]. Occlusion or blurring are also factors that can cause
distortion of the raw image. The main issue concerning these
inverse problems is that they are typically ill-posed.

This stems from a number of reasons, but there are
two primary ones. The first is that we cannot model noise
precisely, due to not knowing the exact distribution of noise.
Thus, it is impossible to completely remove noise from
an image. The second is that with occlusion or blurring,
there are multiple possible raw images that could have
resulted in the measured image. Without perfect knowledge
of the original input and the forward model (to produce
the measured image), it is impossible to create a perfect
reconstruction.

There are many different methods that have been investi-
gated in the past to help mitigate these issues. For handling
noise within an already captured image, bilateral filtering
provides a method of localized denoising [2], and non-local
means utilizes non-local patches of similar intensity to aid in
denoising [1]. For handling blur in images, extended depth
of field helps remove bokeh in still images [3], whereas
flutter shutter is a method for removing motion blur [4].
Many other such examples exist of algorithms that can
handle these and similar tasks.

More recently, avenues involving machine learning mod-
els have proven quite successful. Some models have been
trained to denoise [5], [6], while others can handle deblur-
ring [7]. One model was even trained to handle low-light
images and reconstruct a better lit image from it [8].

In particular, diffusion models are another type of ma-
chine learning model that is actively being researched for
solving inverse problems. This project focuses on using a
provided pretrained diffusion model to estimate noise in
input (“measured”) images, which can then be used in

e 5. Zhu is with the Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA 94305.
E-mail: srzhu3@stanford.edu

sampling steps to eventually output an estimated clean
image.

2 RELATED WORK

To begin, we explain how diffusion models are used in
this project. We begin with a measured image xy. We itera-
tively add noise to the image in a forward noising process,
which can be simplified to a closed form solution [9]. The
image can be partially noised [10], or completely noised.
Then, from the noisy image, we can perform either one
step denoising, or multi-step sampling to iteratively denoise
an image. In the case of the latter, some reverse diffusion
algorithms depend on the posterior to iteratively denoise
[10], [11], [12], while others do not [9]. Further details will
be discussed in the Proposed Method section.

During both the forward and reverse diffusion process,
variance-preserving and variance-exploding formulae can
be used [9]. For this project, we primarily focus on the
variance-preserving formulae. The forward noise model is

given as:
ze = /1= By + Bz @

where ¢ represents the timestep, x; is the image at timestep
i, B is a noise scheduling parameter, and z is a i.i.d. Gaussan
random variable N(0, I). As mentioned before, this can be
compressed down into a closed form solution that relies
only on the initial clean image:

zy =g + V1 -z ()

where
ap=1-p 3)
ar =10)
and z is still an i.i.d Gaussian random variable N(0, I).

The variance-preserving reverse diffusion algorithm is
described by DDPM as follows [9]:

;20 = %(xt -+ (1 — O_gt)SQ(fL'tyt)) (5)

Ground Truth
Image

Reverse
Diffusion Algo

Forward
Noising

—

Fig. 1. A flowchart of the proposed methodology. We begin with a fixed ground truth image to better compare each of the different algorithms. This
ground truth image is passed through a forward model (either masking or blurring) before adding some noise to produce a "measured” image y.
This process simulates taking a picture in the real world. The measured image is then sent through a forward noising algorithm before being run

through each of the different reverse diffusion algorithms.

where £ is the estimated clean image (posterior) and

eg(xy, t)

S6 (lft, t) - m (7)
is the score function, which can be calculated from the
estimated noise €g(x¢,t) computed by a denoising neural
network.

Score-Distillation Editing (SDEdit) is one of the reverse
diffusion algorithms that utilizes posterior sampling. The
algorithm utilizes Equations (5) and (6) and a hyperparam-
eter ¢, which represents how many timesteps out of the
total number of steps used to produce the noise schedule
B¢ are used in the forward and reverse models. Essentially,
it describes the level of noise we want to work with. The
lower the ¢, the less noise is added, and fewer sampling
steps are done in the reverse diffusion process.

The second reverse diffusion algorithm explored is
Score-Based Annealed Langevin Dynamics (ScoreALD).
This algorithm requires knowledge of the forward measure-
ment model (4, from y = Az + b, where y is the measured
image, x is the original image, and b is (Gaussian) noise)
and builds on top of SDEdit. During each reverse diffusion
step, Equations (5) and (6) are also used. However, a final
step is added:

1

meHA(xt) - y||2 8)

Lt—1 = Tg—1 —
where o represents the standard deviation of the mea-
surement noise b and -; represents the annealing variable
at timestep ¢. This enables a form of gradient descent to
converge towards the maximum likelihood clean image Z.
This gradient term is annealed to aid in convergence, so as
more time steps occur, the gradient term grows smaller over
time.

The last reverse diffusion algorithm is Diffusion Poste-
rior Sampling (DPS), which is similar to ScoreALD. The only
difference is the last step, where Equation (8) is replaced
with:

Gt

Ti—1 = Tt—1 — @VthA(ﬁo) - Z/||2)

¢ x 202

G = -
C IV, [[A(R0) — yIP]

(10)

where (is a scaling hyperparameter and (; is the computed
scaling parameter at timestep ¢{. We can see two main dif-
ferences. The first is that instead of computing the norm of
A(zy)—y, we compute the norm of A(#)—y, which relies on
the estimated clean image computed using Equation (5). The
second difference is that instead of annealing the gradient
term over time, the gradient term is normalized and scaled
with the same factor for each timestep.

3 PROPOSED METHOD

To begin, we will implement a forward diffusion algo-
rithm based on the closed-form solution [9], and test the
denoising procedure in a single step. Once we confirm
that these processes work, we will implement a posterior
sampling loop to iteratively denoise a noisy image. A total of
n=1000 timesteps will be used to generate the noise schedule
across all tasks.

To compare each of the three reverse diffusion algo-
rithms, we will fix a test image. This ground truth image is
either masked or blurred before adding a bit of noise. This
output image represents a “measured” image, which would
we obtain in the real world. We will then forward noise the
image (stopping at a predetermined timestep in the case of
SDEdit), then perform each reverse diffusion algorithm. The
overall process is shown in Figure 1

We will use two metrics to compare each of the outputs
from the reverse diffusion algorithms against the ground
truth image: Peak Signal to Noise Ratio (PSNR) and Learned
Perceptual Image Patch Similarity (LPIPS) [13]. The higher
the PSNR value, the better, and the lower the LPIPS value,
the better. We will run each task 5 times to obtain the
average and standard deviation for each metric.

4 EXPERIMENTAL RESULTS

We begin with showing the explicit results of our single
step forward and reverse denoising process. We set ¢t = 300
to ensure that enough noise is added, while retaining the
majority of information from the initial image (see Figure
2). The resulting PSNR is 27.357 & 0.177, and the resulting
LPIPS is 0.199 % 0.009. The code (implemented in Python
3.13.2) for each function is shown below:

Denoised

Fig. 2. Visual results of the single step forward process and denoising.
The leftmost image represents the clean image, the image in the middle
depicts the image after a single step of forward noising, and the right-

most image depicts the output of the denoising algorithm.

1 |def forward_process(x_0, t, alphas_cumprod=

alphas_cumprod) :

2 curr_alpha = alphas_cumprod[t]

3 x0_coeff = np.sqrt (curr_alpha)

4 noise = torch.normal (0.0, np.sqgrt (1-
curr_alpha), size=x_0.shape, device=
device)

5 x_t = x0_coeff » x_0 + noise

6 return x_t

1 |def denoise(x_t, t, eps):

2 score = - eps / np.sqrt (1.0 -
alphas_cumprod[t])

3 x0_hat = sqgrt_recip_alphas_cumprod[t] =*
X_t + sqgrt_recipml_alphas_cumprod[t]

* score

4 return x0_hat

We then implement the posterior sampling loop with the

following functions:

1 |def g _posterior_mean (x_start, x_t, t):

2 assert x_start.shape == x_t.shape

3

4 xt_coeff = posterior_mean_coef2[t]

5 x0_coeff = posterior_mean_coefl([t]

6

7 q = xt_coeff x x_t + x0_coeff * x_start

8 return g

1 |def p_sample (model, x, t):

2 model_output = model (x, t)

3 model_output, model_var_values = torch.
split (model_output, x.shape[l], dim
=1)

4

5 x_0_hat = process_xstart (denoise (x, t,
model_output))

6 x_t = g_posterior_mean (x_0_hat, x, t)

7

8 noise = torch.randn_like (x)

9 model_log_variance = get_variance (
model_var_values, t)

10 if t != 0: # no noise when t == 0

11 x_t += torch.exp (0.5 *
model_log_variance) x noise

12

13 return {’sample’: x_t, ’pred_xstart’:

x_0_hat}
Within the sampling loop itself, we have:
1 |y = p_sample (model, img, time)
2 |img = y[’sample’]

Fig. 3. Result of running posterior sampling on a completely random
input image.

We run this for all 1000 timesteps against a randomly

generated noisy image and obtain the result in Figure 3. As
there is no ground truth image to be compared against, we
cannot meaningfully use our PSNR and LPIPS metrics.

With the groundwork laid out, we move onto our im-

plementation of the three reverse diffusion algorithms. We
begin with our implementation of SDEdit, where we first de-
fine our hyperparameter ¢t = 500 (implemented as init_time)
and the resulting noisy image as a result of DDPM forward

noising:

1 |init_time = 500

2 |guide_coeff = np.sqgrt (alphas_cumprod[
init_time])

3 |noise_coeff = np.sqrt(l - alphas_cumprod][
init_time])

4 |img = guide_coeff * measurement +

noise_coeff * x_start

The remainder of the algorithm relies on the same sam-

pling loop mentioned in the previous task. Some resulting
images are depicted in Figure 4.

For our implementation of ScoreALD we add a few

functions for computing the additional step mentioned in

Equation (8):
1 |def grad_likelihood (x_prev, x_0_hat,
measurement, task, mask_type) :
2
3 Ax = forward(x_prev, task, mask_type)
4 norm = torch.square (torch.linalg.norm(Ax
- measurement))
5 grad = torch.autograd.grad (outputs=norm,
inputs=x_prev) [0]
6 return grad
1 |def scoreald_conditioning(x_prev, x_t,
x_0_hat, measurement, task, mask_type,
anneal_factor=1l):
2
3 grad_term = grad_likelihood (x_prev,
x_0_hat, measurement, task,
mask_type)
4 Xx_t = x_t - grad_term / (np.power (sigma,
2) + np.power (anneal_factor, 2)) /
2
5 return x_t

Lastly, we include the annealing hyperparameter -,

which depends on the task we are trying to accomplish:

mask
20]

if task == ’inpaint’:
anneal_params = [15,

else: # blur
anneal_params = [10, 15]

annealing = torch.linspace (anneal_params|[0],
anneal_params[1l], steps=num_timesteps)

Tk WN =

For our DPS implementation, we modify the
grad_likelihood function and slightly modify the update
step to match Equation (9):

1 |def grad_likelihood(x_prev, x_0_hat,
measurement, task, mask_type):
2 Ax = forward(x_0_hat, task, mask_type)
3 norm = torch.square(torch.linalg.norm(Ax
- measurement))
4 grad = torch.autograd.grad (outputs=norm,
inputs=x_prev) [0]
1 |def dps_conditioning(x_prev, x_t, x_0_hat,
measurement, task, mask_type):

2

3 if task == ’deconv’: # blur

4 scale = 0.3

5 elif mask_type == ’'random’ :

6 scale = 0.1

7 else: # mask

8 scale = 1.0

9 grad_term = grad_likelihood (x_prev,
x_0_hat, measurement, task,
mask_type)

10 zeta_t = scale * 2 * np.power (sigma, 2)
/ torch.norm(grad_term)

11 x_t = x_t - zeta_t / (2 x np.power (sigma
, 2)) x grad_term

12 return x_t

5 DISCUSSION

From Table 1, in terms of PSNR, DPS outperformed the
other two reverse diffusion algorithms by a significant mar-
gin. The LPIPS score for DPS was typically lower than the
other two as well, though ScoreALD was able to sometimes
acheive a lower score than DPS.

Qualitatively, we can see that from SDEdit, 500 timesteps
out of 1000 was not enough to get rid of the mask in
the masked image, and it appears as a gray blotch that
covers up the left upper cheek of the subject. Between
both SDEdit images, both images have lost a lot of detail
when compared to the ground truth image, and the outputs
look like completely different people. When experimenting
with a lower number of timesteps, the mask retention grew
stronger, and the blurring effect from the blur input also
grew stronger. When increasing the number of timesteps,
the masking and blurring grew weaker, but the images
began diverging further from the ground truth image.

We can clearly see that ScoreALD performed much better
than SDEdit, with both output images looking somewhat
similar to the ground truth image. The mask in the masked
input resulted in something similar to a glasses frame,
showing that the model wasn’t able to fully remove the
effects of masking. Additionally, the image appears to be
much more saturated in terms of coloring, and the hair
of the subject almost appears blurred. The blurred input

Fig. 4. SDEdit example output images. The image on the left is the result
of the masked input image, while the image on the right is the result of
the blurred input image.

.

Fig. 5. ScoreALD example output images. The image on the left is the
result of the masked input image, while the image on the right is the
result of the blurred input image.

N\

Fig. 6. DPS example output images. The image on the left is the result
of the masked input image, while the image on the right is the result of
the blurred input image.

appears to be closer to the ground truth image, though the
expression of the subject is completely changed.

Lastly, with DPS, we can see that both output images are
fairly close to the ground truth image. The mask appears to
have been fully removed in the masked input, and there is
no sign of blurring or saturation in either of the images. The
expression remains the same and a lot of the details about
the color and shape of the hair remains the same, though
some differences such as smoothed skin appear.

5.1 Challenges and Limitations

When working on this project, we noticed that the dif-
fusion model performed extremely poorly on non-human
subjects. For example, we tried reconstructing a masked

Mask PSNR Mask LPIPS Blur PSNR Blur LPIPS
SDEdit 19.852 +0.502 | 0.288 +0.024 | 20.146 £0.077 | 0.270 £ 0.016
ScoreALD | 22.44540.262 | 0.218 £0.012 | 22.813 £0.455 | 0.178 +0.014
DPS 35.428 £0.413 | 0.022 +£0.001 | 29.149 £0.295 | 0.077 £ 0.008
TABLE 1

PSNR and LPIPS scores for each different reverse diffusion algorithm.

or blurred image of a red panda using each of the differ-
ent reverse diffusion algorithms, and the resulting output
looked nothing like the original image. This clearly was
a result of the diffusion model being trained only human
images, so the resulting output is to be expected. However,
this highlights the fact that without an extremely large and
diverse dataset, it is hard to produce a generalizable model
over a domain-specific one.

Additionally, as seen in the output images, diffusion
models have a tendency to hallucinate high frequency de-
tails. This is an obvious fact, since hallucinating details from
noise is what diffusion models are made for. However, this
may appear as a bigger issue for fields like medical imaging,
where small details are critically important in diagnosing
diseases or potentially life-threatening issues.

On the surface, it seems as though SDEdit is useless, as it
performs significantly worse than both ScoreALD and DPS.
However, both ScoreALD and DPS require knowledge of
the forward model A (as mentioned in the Related Work
section). In the real world, having no knowledge of the for-
ward model is common, which makes ScoreALD and DPS
unusable in those situations. Additionally, we noticed that
performing ScoreALD and DPS were much more computa-
tionally expensive than SDEdit, so limitations in resources
could determine which process is better, depending on the
use case.

6 CONCLUSION

Utilizing diffusion models for solving inverse problems is
still a very active area in the field of signal processing. As
seen from the results of this project, they are not perfect and
have many limitations. However, depending on the amount
of information that we have in terms of forward models
and the tolerance we need for hallucinations, they could be
a very useful tool.

ACKNOWLEDGMENTS

The author would like to thank PhD candidate Axel Levy
for providing mentorship throughout the duration of this
project and Professor Gordon Wetzstein for teaching EE 367.

REFERENCES

[1] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
image denoising,” in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol. 2, 2005,
pp. 60-65 vol. 2.

[2] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “A gentle
introduction to bilateral filtering and its applications,” ACM SIG-
GRAPH 2007 Papers - International Conference on Computer Graphics
and Interactive Techniques, p. 1, 08 2008.

[3] S.Kuthirummal, H. Nagahara, C. Zhou, and S. K. Nayar, “Flexible
depth of field photography,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 1, pp. 58-71, 2011.

(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

[12]

(13]

R. Raskar, A. Agrawal, and]J. Tumblin, “Coded exposure
photography: motion deblurring using fluttered shutter,”
vol. 25, no. 3, p. 795-804, Jul. 2006. [Online]. Available:
https://doi.org/10.1145/1141911.1141957
K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond
a gaussian denoiser: Residual learning of deep cnn for image
denoising,” Trans. Img. Proc., vol. 26, no. 7, p. 3142-3155, Jul. 2017.
[Online]. Available: https://doi.org/10.1109/TIP.2017.2662206

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras,
M. Aittala, and T. Aila, “Noise2noise: Learning image restoration
without clean data,” in International Conference on Machine Learning
(ICML), vol. 80, March 2018, pp. 2971-2980.

S. Nah, T. Kim, and K. M. Lee, “Deep multi-scale convolutional
neural network for dynamic scene deblurring,” 07 2017, pp. 257—
265.

C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in
the dark,” 2018. [Online]. Available: https://arxiv.org/abs/1805.
01934

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” CoRR, vol. abs/2006.11239, 2020. [Online]. Available:
https:/ /arxiv.org/abs/2006.11239

C. Meng, Y. Song, J. Song,]J. Wu, J. Zhu, and S. Ermon,
“Sdedit: Image synthesis and editing with stochastic differential
equations,” CoRR, vol. abs/2108.01073, 2021. [Online]. Available:
https:/ /arxiv.org/abs/2108.01073

A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. L.
Tamir, “Robust compressed sensing MRI with deep generative
priors,” CoRR, vol. abs/2108.01368, 2021. [Online]. Available:
https:/ /arxiv.org/abs/2108.01368

C. Lu, Y. Zhou, E Bao,]J. Chen, C. Li, and J. Zhu, “Dpm-solver++:
Fast solver for guided sampling of diffusion probabilistic models,”
2023. [Online]. Available: https://arxiv.org/abs/2211.01095

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” 2018. [Online]. Available: https://arxiv.org/abs/1801.
03924

