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Inverse Imaging with Diffusion Model Prior
Sikandar Y. Mashayak

Abstract—The motivation of this project is to learn and explore diffusion model based techniques to solve inverse imaging problems,
such as deconvolution and in-painting. In this project, we implement and compare three techniques for modeling conditional terms of
priors, namely score-distillation editing, ScoreALD, and diffusion posterior sampling. For a diffusion model, we use a pre-trained
diffusion model trained with FFHQ dataset and DDPM sampling approach.
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1 INTRODUCTION

INVERSE imaging problems in most cases are ill-posed
problems. For a given reference image x ∈ RN and a

measurement matrix A ∈ RM×N , the vectorized measure-
ments b ∈ RM are formed as

b = Ax+ η, (1)

where η is an additive noise term. In general imaging ap-
plications the number of measurements is smaller than the
size of the target (unknown) image, i.e., M < N . Therefore
Eq. 1 is under-determined and there are infinitely many
solutions for x that could satisfy Eq. 1. Hence we need to
add a constraint or a prior on the unknown x to determine
the feasible solutions among the infinitely many possible
solutions.

The inverse imaging problem with a prior is

minimize
x

1

2
∥Ax− b∥22 + λΨ(x), (2)

where Ψ(x) is the prior and λ is its relative weight com-
pared to the data fidelity term. There are various options
to choose prior. In this project, we solve in-painting and
deconvolution inverse imaging problems with different dif-
fusion model based priors, namely score-distillation editing
(SDEdit) [1], ScoreALD [2], and diffusion posterior sam-
pling [3], and compare their accuracies.

2 RELATED WORK

In conventional approaches, based on the knowledge of
the target image characteristics, some popular priors are as
follows. Ψ(x) = ∥∇x∥2 for blurry target images to promote
smoothness, Ψ(x) = ∥∇x∥1 for sparse images to promote
sparsity, Ψ(x) = TV(x) [4] for natural images with sparse
gradients. TV norm is one of the most popular regulariza-
tion prior for natural images. Furthermore, for a general
prior condition an arbitrary denoiser, such as DnCNN can
also be used as a prior.

In this project, we use the most recent and powerful dif-
fusion model based approach as a prior for inverse problem
as described in the following Method section.
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3 METHOD

Based on the Bayesian perspective of inverse problem, the
target distribution of x could be conditioned on the mea-
surement of b as

pt(x|b) ∝ pt(b|x)pt(x). (3)

The optimal solution for Eq. 3 could be determined as a
maximum-a-posterior (MAP) solution

xMAP = arg minx − log (p(b|x, σ))− log (p(x)) . (4)

Since, the diffusion model based sampling approach is
equivalent to solving inverse stochastic difference equation.
We can modify inverse SDE by replacing unconditional
probability of p(x) with conditional probability of p(x|b)
which results in the modified inverse SDE equation

dx =f(x, t)

− g2(t) (∇x log pt(x) +∇x logpt(b|x)) dt
+ g(t)dw̃.

(5)

However, the score function of conditional probability
∇x log pt(b|x) is only valid at target x0, i.e.,

∇x log pt(b|x0) ̸= ∇x logpt(b|xt). (6)

It is non-trivial to estimate ∇x log pt(b|x) accurately. Hence,
we test two approximate approaches to estimate this condi-
tional score terms.

First is ScoreALD [2],

∇x log pt(b|x0) ≈ ∇x log pt(b|xt)

≈ − 1

σ2 + γ2
t

(
AT(b−Ax)

)
,

(7)

which simply approximates conditional score term with the
score term evaluated at current time step in inverse diffusion
step, and controls the approximation error through anneal-
ing term γ2

t . ScoreALD mainly applies to linear inverse
problems.

Second is DPS [3],

∇x log pt(b|x0) ≈ ∇x logpt (b|x0 = E [x0|xt]) , (8)

which approximates the conditional score term with the
score term evaluated at estimated mean at a given inverse
diffusion step. DPS is shown to work with both linear and
non-linear inverse problems.
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In this project, to solve inverse SDE we use denoising
diffusion probabilistic model [5] with slight modifications
as described in the following subsection 3.1.

3.1 Denoising Diffusion Probabilistic Models

3.1.1 Variance Preserving Formulation

In this project, we only consider the variance-preserving
(VP) formulation of diffusion models []. In VP formulation,
the forward noise model from step t− 1 to step t is given as

xt =
√
1− βtxt−1 +

√
βtzt−1, t = 1, 2, ..., T, (9)

where zt−1 ∼ N (0, I) are i.i.d. Gaussian random variables
in each step and βt is the noise schedule. Substituting αt =
1− βt, in Eq. 9 we get

xt =
√
αtxt−1 +

√
1− αtzt−1, (10)

which could be expanded to

xt =
√
αt
√
αt−1xt−2 +

√
1− αtzt−1 +

√
αt

√
1− αt−1zt−2,

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1z, (11)

where we use the relation that for weighted sum of two
standard Gaussian variables Z = w1Z1+w2Z2, the resultant
Gaussian distribution is Z ∼ N (0, w2

1 + w2
2). By expanding

Eq. 11 to x0 terms we get

xt =
√
ᾱtx0 +

√
1− ᾱtz, (12)

where ᾱt =
∏t

i=1 αi, and z ∼ N (0, I).

3.1.2 Reverse Diffusion Step

For the case of VP formulation, DDPM sampling step, i,.e.,
reverse diffusion step, is defined as

x̂0 =
1√
ᾱt

(xt + (1− ᾱt)sθ(xt, t))

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x̂0.

(13)

We can further simplify Eq. 13 by substituting the formula-
tion for x̂0 as

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)√
ᾱt(1− ᾱt)

xt

+

√
ᾱt−1(1− αt)(1− ᾱt)√

ᾱt(1− ᾱt)
sθ(xt, t),

=

√
ᾱt
√
αt(1− ᾱt−1) +

√
ᾱt−1(1− αt)√

ᾱt(1− ᾱt)
xt

+

√
ᾱt−1(1− αt)(1− ᾱt)√

ᾱt(1− ᾱt)
sθ(xt, t),

=

√
αtᾱt−1

√
αt(1− ᾱt−1) +

√
ᾱt−1(1− αt)√

αtᾱt−1(1− ᾱt)
xt

+

√
ᾱt−1(1− αt)(1− ᾱt)√

αtᾱt−1(1− ᾱt)
sθ(xt, t).

(14)

Eq. 14 simplifies to

xt−1 =
1

√
αt

(xt + (1− αt)sθ(xt, t)) . (15)

TABLE 1
Single-step denoising results.

t=100 t=300 t=500
PSNR LPIPS PSNR LPIPS PSNR LPIPS

Sample 1 31.20 0.09 26.12 0.20 21.96 0.35
Sample 2 32.59 0.09 27.26 0.21 23.47 0.32

Furthermore, as per Tweedie’s formulation for VP for-
ward process,

E [xt−1|xt] =
1

√
αt

(xt + (1− αt)sθ,t) ,

sθ,t =

√
αtE [xt−1|xt]− xt

(1− αt)
,

sθ,t = − ϵθ,t√
1− αt

.

(16)

Substituting Eq. 16 in Eq. 15 we get

xt−1 =
1

√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
. (17)

4 EXPERIMENTAL RESULTS

First, we implement forward noise addition and inverse
denoising methods based on DDPM sampling. Here we
test our implementation by doing single step denoising and
unconditional image generation. In Fig. 1, we can observe
that the as we increase the number of forward noise steps,
the single step denoising estimate deviate more from the
ground truth input. This is reflected in both qualitative
comparison of images in Fig. 1, and PSRN and perception
metrics as shown in Table 1.

Furthermore, as shown in Fig. 2 when we generate
different samples from pure noise by 1000 denoising time
steps, we notice that the diffusion model predicts samples
that look like human faces.

Fig. 1. Single-step denoising at different noise levels.

Finally, we estimate and compare inverse problem solu-
tion for image in-painting and deconvolution with 3 differ-
ent techniques, SDEdit, ScoreALD, and DPS.
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Fig. 2. Unconditional image generation.

TABLE 2
SDEdit results.

t=400 t=500 t=600
PSNR LPIPS PSNR LPIPS PSNR LPIPS

Box mask 20.57 0.23 18.48 0.25 16.33 0.34
Random mask 17.43 0.28 16.04 0.33 14.17 0.48

Blur 20.18 0.23 18.78 0.29 17.10 0.36

TABLE 3
Comparison of ScoreALD and DPS results.

ScoreALD DPS
PSNR LPIPS PSNR LPIPS

Box mask 22.70 0.18 31.77 0.05
Random mask 20.35 0.31 22.00 0.16

Blur 22.00 0.19 24.62 0.11

For SDEdit, as shown in Fig. 3 and Table 2, we test
prediction with different noise time steps and observe that
for small time steps the prediction is close to the input
measurement and for larger time steps, the prediction looks
more realistic but further from the input measurement. Here
we show outputs with 3 different noise steps of 400, 500, and
600.

In Fig. 4 and Table 3, we compare the predication quality
of ScoreALD and DPS. As we can see from this example,
DPS appears to solve both in-painting and devolution in-
verse problems better than ScoreALD in terms of qualitative
and quantitative measures. We notice that prediction from
DPS are much more consistent with the ground truth com-
pared to ScoreALD predictions.

5 CONCLUSION

In this project, we learn basics of diffusion models and
apply it to solve inverse imaging problems. We implement
and experiment with inverse stochastic denoising step using
denoising diffusion probabilistic model (DDPM). We imple-
ment conditional priors to solve inverse imaging problems
using ScoreALD and DPS approximations. Based on our
experiments to solve image in-painting and deconvolution
problems, we find that DPS method outperforms ScoreALD.
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Fig. 3. SDEdit denoising at different noise levels.

Fig. 4. ScoreALD and DPS inverse imaging results.


