
1

Architectural Modeling for 3DGS - EE367
Siddhant Gupta

Abstract—Recent advancements in sensing and display technologies have driven the rapid growth of extended reality (XR), requiring
high-fidelity rendering techniques like novel view synthesis (NVS) for immersive experiences. Gaussian splatting, a new approach to
NVS, has shown promise over Neural Radiance Fields (NeRF) by efficiently projecting 3D scenes to 2D views with improved inference
speed and image quality. However, the computational workload remains a challenge for low-power XR devices. In this project, we
analyze the performance bottlenecks in Gaussian splatting and evaluate the potential for accelerating its most time-consuming stage
using a lightweight hardware accelerator. By mapping the bottleneck to a 16×16 parallel quantized processor, we explore the trade-offs
between computational performance, performance, and signal-to-noise ratio (SNR) to enable high-quality, low-latency rendering for
next-generation XR applications. While this is not a cycle accurate model, or simulating a specific hardware architecture, it is the first
step towards devloping a suitable accelerator model for the application

Index Terms—Gaussian Splatting, 3D Rendering, Computer Architecture, Novel View Synthesis, Accelerator Design, Extended
Reality,

✦

1 INTRODUCTION

THIS Extended reality (XR) applications—including vir-
tual reality (VR), augmented reality (AR), and mixed

reality—are becoming increasingly prevalent due to rapid
advances in sensing and display technologies. Modern XR
systems often feature dual high-resolution displays (one per
eye) paired with specialized optics to replicate human 3D
perception. These systems also integrate multiple sensors
(e.g., RGB cameras, time-of-flight, and LiDAR) to capture
environmental depth and geometry, enabling immersive
and realistic user experiences. While AR primarily overlays
virtual elements onto the real world, another key XR use
case is the rendering of pre-captured or synthetic 3D scenes.
Achieving smooth, high-fidelity rendering in these scenar-
ios demands substantial computational resources, which
poses stringent constraints on power efficiency and la-
tency—particularly in lightweight, wearable devices.

One of the core challenges in XR rendering pipelines is
novel view synthesis (NVS), the process of generating new
viewpoints of a scene from a limited set of input images.
For several years, Neural Radiance Fields (NeRF) have
been the state-of-the-art approach for NVS. However, de-
spite ongoing efforts to optimize NeRF for real-time perfor-
mance—such as dedicated hardware acceleration—NeRF-
based pipelines often remain computationally heavy for
resource-constrained platforms. More recently, a technique
known as 3D Gaussian splatting has emerged, offering
potentially superior performance and image quality. Instead
of using dense voxel grids or implicit neural representa-
tions, 3D Gaussian splatting represents a scene as a set
of Gaussian primitives. This approach exploits the sparsity
inherent in many real-world scenes and can achieve high-
quality rendering at reduced inference times compared to
NeRF. Preliminary work indicates that Gaussian splatting
may be especially well-suited for mobile and edge devices

• Siddhant Gupta is with the Department of Electrical and Computer
Engineering, Stanford University, Stanford, CA, 94305.
E-mail: siddg [at] stanford [dot] edu.

Fig. 1. Rendering performances (FPS) and power draws (mW) of Edge
GPU, Server GPU, and two state of the art 3DGS accelerators running
the same workload of 3DGS rendering inference

such as extended reality platforms due to the combination
of rendering speed and quality of the projections [1].

Despite these promising results, the large memory foot-
print of 3D Gaussian splatting can still pose challenges for
real-time or near-real-time XR applications, with scene rep-
resentations sometimes exceeding tens of gigabytes. Some
research efforts have begun to address this issue by applying
quantization and pruning techniques, reducing memory
usage by up to 25–27× while maintaining acceptable image
quality [2]. Additionally, most existing implementations rely
on general-purpose graphics processing units (GPUs) and
CUDA, rather than exploring custom hardware acceleration.
One of the few studies to investigate specialized hardware
for Gaussian splatting proposed a co-processor design that
offloads the volume rendering tasks from the GPU to a ded-
icated accelerator, effectively handling the inherent sparsity
of the scene representation [3].

However in the latest computer architecture and VLSI



2

conferences, new accelerators have been proposed for 3DGS
with massive improvements to efficiency. Figure 1 compares
the power usage and rendering frames per second (fps)
between two latest works presented in ISSCC 2025, an edge
computing GPU, and a high performance data center grade
GPU. As the chart shown in figure 1, custom accelerators
can attain far higher performance (in fps) relative to their
power draw. Building on these insights, this project aims
to explore whether 3D Gaussian splatting can be efficiently
mapped to a lightweight, low-power hardware accelerator.

Specifically, we target a CGRA (Course Grain Recon-
figurable Array) style SoC [4], which is a more general-
purpose SoC. By identifying the primary computational
bottleneck in the Gaussian splatting pipeline and simulating
parallelization strategies on a modest array of processing
elements (e.g., a 16×16 array), we seek to determine what the
critical bound to performance is for the algorithm. First, we
ensure that we have a code base that can render Gaussians
without the use of CUDA or any other SIMD/GPU libraries
- this involves substituting a c rasterizer into the codebase
for the 3D Gaussian splatting codebase developed by the
original authors. The codebases used and their authors are
credited in the acknowledgments.

Next, the C-based code has some profiling injected to di-
agnose the bottlenecks in the performance. After analyzing
the bottleneck: the tiled rendering portion of the algorithm,
we simulate what the performance and accuracy would be if
this portion of code was run on 16x16 (256) parallel process-
ing units at reduced precision. The precisions attempted in
this work are the 16 bit floating point representation known
as bfloat16, and the 8 bit floating points E5M2 and E4M3.
Lastly, we analyze the resulting simulated runtimes and
SNRs and provide an analysis of the results, as well as ideas
for future work.

2 RELATED WORK

As 3DGS is a relatively new method of rendering, most pub-
lications on this matter contain algorithmic improvements
and utilize the CUDA GPU processing library for implemen-
tations. Early hardware works proposed offloading some
portion of the algorithm off of the GPU, but the bulk of
the rasterization was still done using CUDA on a GPU [3].

During the ISSCC 2025 conference, two more accelera-
tors were proposed targeting 3DGS rendering applications.
These accelerators both are standalone systems that do not
depend on a GPU coprocessor using a CUDA framework.
One work, IRIS, has a large portion of the chip area focused
on a dedicated hardware unit to extract coarse grain surfaces
from a scene and store associated gaussians by surface. This
accelerator seeks to exploit spacial locality in the storage
of gaussians in memory to reduce the computations signif-
icantly and has three very large cluster processing units to
rasterize the pixels [5].

Another work, titled ”1.78mJ/Frame 373fps 3D GS Pro-
cessor Based on Shape-Aware Hybrid Architecture Using
Earlier Computation Skipping and Gaussian Cache Sched-
uler”, was also proposed in ISSCC 2025 and uses 90% less
chip area than IRIS. This work also uses spatial locality
in the processing of gaussians to reduce computations, but
uses a different architecture to process the pixels. While IRIS

had three large clusters, this work uses a hybrid array of
processing elements (between pure rasterization and inter-
polation elements) [6].

While both of these mentioned ISSCC works had excel-
lent results in terms of power usage for rendering through-
put, they are highly specialized SoCs for this task. In this
work, we seek to do the first step of architecture exploration
to target a more general SoC/accelerator: something like a
CGRA. A CGRA is a course grain reconfigurable array, with
memory and compute tiles where the dataflow between the
tiles and the operations of the tile are runtime reconfigurable
[4]. The system also has a CPU to co-process with the CGRA.

3 PROPOSED METHOD

This work differs from most 3DGS related works as it
seeks to conduct intitial analysis and exploration for an
accelerator rather than improvements to the algorithm or
proposing a new accelerator. Specifically, the target is a more
generic computing paradigm than the accelerators in the
mentioned ISSCC 2025 works. In this case, we analyze how
16 by 16 paralellism on quantized compute units affect the
bottleneck of the algorithm and the resulting accuracy from
quantization.

Most architectural performance analysis is done using a
cycle-accurate model, where the simulated hardware exactly
matches the functionality and features of the proposed ac-
celerator, and accurately models the compute and memory-
related cycles for a workload. However, for this stage of the
process and timeframe for this project, discussions in this
work are limited to simulated performance on a desktop
CPU. The details of this implementation follow in this
section.

3.1 Adapting Code and Profiling

The original codebase for the rendering of 3DGS of 3DGS
uses CUDA kernels. In order to profile and experiment
with quantization, it is important to have a clearer serial
version of the code. A member of AnySyn3D provides a C++
version of the differentiable rasterizer submodule used in
the original work, which can be used (with modifications) in
the full top-level codebase (credited in Acknowledgements).
Changes needed to be made for compatibility as the release
versions of the two codebases are different. For example,
the c rasterizer does not support or return a depth map or
perform any anti-aliasing, so these need to be removed from
the top-level code base.

The code changes needed for the bulk of this work are
in the forward.c file, which defines the CPU preprocessing
and rasterization for the forward pass of 3DGS rendering.
First, the code is refactored such that the processing of single
pixel is moved to a separate function. The loop is rewritten
for pixel-parallelism at the tile level using calls to the pixel
processing function. A couple of timing macros are defined
using the C time.h library to print the elapsed time between
the start and end calls for a given block. Macros were
added to log the execution time of rendering one image,
and finer grain rendering time for the individual stages:
preprocessing, rasterization/rendering, and rendering per
pixel.



3

Fig. 2. Simulated runtime on an ARM64 Macbook CPU for rendering
one image, with and without parallelization. Note that this is not a cycle
accurate model and does not account for overhead at the system level.

3.2 Quantizing Rasterization

While most implementations of 3DGS at an algorithmic
level use double precision (64 bit) or full precision (32) bit
floating point representation for data values, this contributes
to high computation energy, data storage cost, and high
system memory usage. A common method to designing
an efficient accelerator involves quantifying operations and
reducing the size of data, where possible. Since the original
CGRA supports operations up to 16 bit precision, this work
attempts both 8-bit and 16-bit quantization schemes for the
differentiable rasterization block.

Quantization in hardware is done such that both inter-
mediate results, and mathematical operations happen at re-
duced precision. However, for modeling accuracy impacts,
it is common and sufficient to quantize results before and
after each mathematical operation rather than to define bit-
accurate reduced-precision operations in C/C++.

In order to implement quantization in this work, custom
quantized data types are defined for bfloat16, E5M2, and
E4M3. There is also a function to convert to and from float
for each of these data types. This conversion is done for
each data member within the rasterization code at each
mathematical operation to ensure the quantization model
is as close as possible to if it were done using a reduced
precision ALU.

The evaluation metrics (PSNR, SSIM, LPIPs) are calcu-
lated for each image and averaged for the baseline code,
and the various quantizations. The results are described in
Section 4.

3.2.1 8-bit Quantization
Two common quantizations for 8-bit floating point in our
project are the E5M2 and E4M3 representations. In both
cases, the most significant bit is used as the sign bit, while
the remaining bits are divided between the exponent and
the mantissa. The E5M2 format allocates 5 bits for the
exponent (with a bias of 15) and 2 bits for the mantissa,
providing a wide dynamic range that can represent very
large or very small values; however, this comes at the cost
of coarse fractional precision. Conversely, the E4M3 format
uses 4 exponent bits (with a bias of 7) and 3 mantissa
bits, yielding better precision in the fractional part but with
a more limited range. In our codebase, we implemented
conversion routines that extract the IEEE 754 32-bit repre-
sentation of a float and then remap the sign, exponent, and
mantissa to the appropriate 8-bit layout for each format.
Special cases such as zero, subnormals, and infinities are
carefully handled, ensuring that our compressed represen-
tations maintain acceptable accuracy for intermediate values
like alpha or conic parameters in the rendering pipeline.

3.2.2 16-bit Quantization
For 16-bit quantization, we employ a bfloat16 representa-
tion—a format that dedicates 1 bit to the sign, 8 bits to the
exponent, and 7 bits to the mantissa. This format is par-
ticularly well-suited for applications where preserving the
dynamic range is critical, as its exponent field mirrors that
of a full 32-bit float, while the truncated mantissa reduces
precision. In our implementation, converting a 32-bit float to
bfloat16 is performed using a simple truncation approach,
whereby the lower 16 bits of the 32-bit representation are
discarded. Similarly, to convert back, the bfloat16 value is
shifted to reconstruct a 32-bit float. This approach results
in a significant reduction in memory usage and bandwidth,
which is especially beneficial in high-throughput or real-
time rendering scenarios, while still retaining the essential
dynamic range necessary for robust performance.

3.3 Simulating Parallelism & Bottleneck Analysis
The initial runtime (without parallelism) was heavily domi-
nated by the rasterization step compared to the preprocess-
ing step. About 95 percent of the runtime was in the pixel
rasterization - the images are 1024 by 1024, and which is
about a million individual pixels to be rasterized.

In order to simulate the effects of using parellel pro-
cessing, the code was refactored to have inner loops of 16
by 16 dimensions calling the single-pixel compute function.
Since the processor cannot actually process all 256s fully
parallel, this work tracks the maximum pixel processing
time for a given 16 by 16 tile, and uses that to represent
the time for that tile. Then, when computing the final run
time of rasterization, the representative time for each tile is
summed. The resulting figure and analysis is presented in
the Experimental Results and Analysis section.

4 EXPERIMENTAL RESULTS AND ANALYSIS

Due to very poor runtime and unrecognizable image recon-
structions, the E4M3 and E5M2 representations are excluded
from the results. Resulting images were primarily black



4

Fig. 3. PSNR, SSIM, and LPIPS average over two datasets with and
without quantization

with a few colorful stripes running in arbitrary directions.
The range of exponents and mantissa are not sufficient to
perform 3DGS rasterization at 8 bit precision with either
floating point scheme, though E5M2 seemed to work better
than E4M3.

However, the bfloat16 quantization appears to be viable.
When bfloat16 quantization is enabled, the theoretical ben-
efit is that the memory used for representing each of the
gaussians can be reduced by half and computation can be
done on the 16 bit processing elements. In terms of image
quality, each of the images looks largely similar to the base-
line representations without quantization. Quantitatively,
there is about a 10% drop in PSNR with this quanitzation.
with the SSIM dropping 5% on the playroom dataset and
the LPIPS dropping about 20% on the flowers dataset, all
else being about the same.

Qualitatively, most of the image looks about the same
between the bfloat16 and the baseline, with the quantized
image appearing a little sharper. However, there are bands
of artifacts towards the right side of the image. Even though
the bfloat16 representation is much better than the 8-bit
floating ones, these artifacts are likely caused by the bfloat16
range’s limitations as gaussian transparencies’ contributions
stretch the exponent range, but the coordinates and dis-
tances stretch the mantissa range.

Sample images are included in Figure 4 that demonstrate
the quality of the reconsuutrction along with the artifacts.
In future works, this can likely be addressed by performing
mixed precision math, using a scaled integer representation
for the distances and floating for the other components.

From a performance standpoint, the runtime of the code
between fully serial and the model for parallelized goes
from 8.38 to about 0.38 seconds. However, as previously
mentioned, this timing result is not an accurate model of
timing for the accelerator. For example, by using 16 by
16 parallelism for a tile, theoretically the improvement in
the rendering time should be almost 256x but the actual
improvement is an order of magnitude lower than this.

This is due to the course grain simulation being compiled
and run on a desktop grade CPU, with overheads such as
context switching, and loading memory. However, even this
improvement suggests that utilizing 16 by 16 parallelism
can be viable for achieving a target FPS of over 30 - as
on the CPU it was able to bring the runtime down to

be similar to that of the pre-processing stage. Of course,
0.38 seconds per frame is not enough to meet a reason-
able FPS for an extended reality application but a cycle
accurate hardware model, that has low-level optimizations,
and accurately models latency for memory overhead and
computations will provide a much more helpful metric for
further optimizations.

5 CONCLUSION

In this work, we conducted an architectural analysis for
a specialized accelerator targeting 3D Gaussian Splatting,
a promising yet computationally heavy method for ren-
dering 3D scenes from arbitrary camera viewpoints. By
very roughly modeling a CGRA SoC composed of a
CPU and a 16×16 array of parallel processing elements,
we focused on balancing the two primary stages of the
pipeline—preprocessing and rendering.

Our results on a 1K image confirm that rendering is the
main bottleneck on CPU-based implementations, prompting
us to explore reduced-precision parallelization to see if it is
feasible to map this to the actual CGRA with 16 bit preci-
sion. Specifically, we evaluated bfloat16, E4M3, and E5M2
quantization methods; while the latter two suffered from
exponent saturation and unacceptable image degradation,
bfloat16 maintained a reasonable trade-off between accuracy
and performance, incurring a modest PSNR drop of about
2 dB. There was some artifacting, that we are reasonably
show can be mitigated with mixed-precision math and is
also a topic for future exploration.

Furthermore, simulating tile-based (16×16) parallel ren-
dering showed that the pipeline could be better balanced,
potentially reducing overall runtime. Although these find-
ings are based on a rough CPU-based runtime model, they
provide valuable insight into how specialized accelerators
might be structured for more efficient 3D Gaussian Splat-
ting. Future efforts will involve developing a cycle-accurate
model to capture memory transactions, concurrency, and
interconnect overhead. Specifically, the cycle count for one
pixels rendering as a function of the number of gaussions on
a CGRA PE will be measured. Then, a more accurate model

Fig. 4. Sample images from the Playroom and Flowers datasets used in
the original Gaussian Splatting paper with and without bfloat16 quanti-
zation



5

for rendering throughput and latency can be developed
from there on.

ACKNOWLEDGMENTS

The author would like to thank Brian Chao and Gordon
Wetzstein for their support and mentorship in this course
project. Additional acknowledgments are warranted for the
author of the c-diff-rasterization codebase (the C++ imple-
mentation of the rasterizer) whose work is not affiliated
with a publication (https://github.com/MrSecant/diff-
gaussian-rasterization).

REFERENCES

[1] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” 2023. [Online].
Available: https://arxiv.org/abs/2308.04079

[2] P. Papantonakis, G. Kopanas, B. Kerbl, A. Lanvin, and G. Drettakis,
“Reducing the memory footprint of 3d gaussian splatting,”
Proceedings of the ACM on Computer Graphics and Interactive
Techniques, vol. 7, no. 1, p. 1–17, May 2024. [Online]. Available:
http://dx.doi.org/10.1145/3651282

[3] W. Lizhou, H. Zhu, S. He, J. Zheng, C. Chen, and X. Zeng, “Gauspu:
3d gaussian splatting processor for real-time slam systems,” 11
2024, pp. 1562–1573.

[4] T. Kong, K. Koul, P. Raina, M. Horowitz, and C. Torng, “Hardware
abstractions and hardware mechanisms to support multi-task
execution on coarse-grained reconfigurable arrays,” 2023. [Online].
Available: https://arxiv.org/abs/2301.00861

[5] S. Song, S. Kim, W. Park, J. Park, S. An, G. Park, M. Kim, and H.-
J. Yoo, “Iris: A 8.55mj/frame spatial computing soc for interactable
rendering and surface-aware modeling with 3d gaussian splatting,”
02 2025, pp. 1–3.

[6] X. Feng, H. Wang, C. Tang, T. Wu, H. Yang, and Y. Liu,
“1.78mj/frame 373fps 3d gs processor based on shape-aware hybrid
architecture using earlier computation skipping and gaussian cache
scheduler,” in 2025 IEEE International Solid-State Circuits Conference
(ISSCC), vol. 68, 2025, pp. 1–3.

Siddhant Gupta Siddhant Gupta is a Masters student in Electrical
Engineering at Stanford University, supervised by Professor Priyanka
Raina. His interests are at the intersection of compute architecture and
extended reality systems.


