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HDR Image Generation by consistent LDR
denoising

Rupika Nilakant, EE367, Stanford University

Abstract—This poster proposes a novel method for generating high-dynamic range (HDR) images using pre-trained, black-box
low-dynamic range (LDR) denoising diffusion models. The motivation is to overcome limitations in HDR image synthesis by leveraging
multiple LDR brackets and ensuring consistency between them during the diffusion process. This allows the generation of HDR images
without requiring large-scale HDR datasets or expensive model retraining. The key idea is to operate multiple denoising processes to
generate multiple LDR brackets that together form a valid HDR result. To this end, the method introduces an exposure consistency
term into the diffusion process to couple the brackets such that they agree across the exposure range they share. The brackets are
then fused to produce a single HDR image using Debevec’s method followed by tonemapping.

Index Terms—Diffusion Models, Computational Imaging
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1 INTRODUCTION

MOdern denoising diffusion models used for image
generation typically generate them as Low Dynamic

Range (LDR) images whereas High Dynamic Range
(HDR) images are required in several applications such
as advanced displays or scene reconstruction involving
profound shadows and specular highlights. Common
diffusion models are not HDR as there is no sufficiently
large HDR image dataset available to re-train them, and,
second, even if it was, re-training such models is impossible
for most compute budgets.

The goal is to produce a set of individual meaningful
exposure ”brackets”, i.e., LDR images, which can be
merged into an HDR image. This method does not need
any fine-tuning or training and considers the denoiser a
black box. A ”bracket” should have all details, without
noise, in the range of values it represents. To work as
a combination, a value in one bracket must match its
value re-exposed to another bracket and ultimately when
they are merged. This is done by modifying the diffusion
process based on Diffusion Posterior Sampling (DPS) [1]
that operates between multiple brackets jointly by adding a
consistency term in the reverse diffusion process.

2 RELATED WORK

HDR images directly register scene radiance, typically up
to a scale factor, so that image details in the darkest and
brightest scene regions are visible. As sensors with HDR
capabilities are relatively rare and expensive, a stack of dif-
ferently exposed LDR photographs is typically merged into
an HDR image [2]. An alternative solution to multi-exposure
techniques is to restore HDR information from a single
LDR image using deep learning techniques. Single-image
HDR reconstruction can be performed directly [3], or, alter-
natively, by first producing a stack of different exposures
that are then merged into an HDR image [4][5][6]. Even
though some methods employ adversarial training [7], the
key problem remains limited performance in reconstructing

clamped regions. Those methods mostly require LDR and
HDR image pairs for training, which is problematic due
to limited datasets. Recently, GlowGAN [8] addressed the
latter two problems by fully unsupervised learning a gen-
erative model of HDR images exclusively from in-the-wild
LDR images. As this approach is based on StyleGAN-XL
[9], it re- quires GAN training on narrow domains (e.g.,
lightning, fireworks) to capture the respective HDR image
distribution.

2.1 Diffusion Models in HDR imaging

Denoising diffusion probabilistic models (DDPMs)
[11] demonstrate huge capacity in modeling complex
distributions and typically outperform other generative
models in terms of image realism, diversity, and detail
reproduction. DDPMs also proved useful for solving
linear and non-linear [1] inverse imaging problems that
are common in image restoration and enhancement tasks
guided by the degraded input image.

In HDR imaging tasks, the degradation model is more
complex, and existing solutions based on DDPMs are
more sparse. Wang et al. [12] propose low-light image
enhancement using exposure diffusion that is initialized
with the noisy low-light image instead of Gaussian noise,
which g simplifies denoising and consequently reduces the
network complexity and the required number of inference
steps. The method can be trained using pairs of low-light
and normally-exposed photographs, as well as synthetic
data using different noise models. Fei et al. [13] employ a
pre-trained DDPM and propose the Generative Diffusion
Prior (GDP) for unsupervised modeling of the natural
image posterior distribution. They demonstrate the utility
of this framework for low-light image enhancement and
HDR image reconstruction by merging low, medium, and
high exposures. A similar task, but with explicit emphasis
on large motion between the three exposures and severe
clamping at the same time, is addressed in Yan et al.[14]
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Fig. 1. Diffusion occurs from left to right and across multiple exposure levels (brackets), shown vertically.The process starts with three independent
noises. At each diffusion step (one is shown), denoising is guided by an exposure consistency term (middle block). In this term, brackets are made
consistent when re-exposed. When diffusion has finished, the brackets form an HDR image under a common HDR fusion.

where train a DDPM to capture the distribution of natural
HDR environment maps, but are limited to rather narrow
classes (e.g., urban streets) due to scarcity of available HDR
training data.

3 PROPOSED METHOD

This project follows [1] and relies on off-the-shelf pre-trained
diffusion models that feature better domain generalizability
due to intensive training on large datasets than explicit
training on small datasets of LDR–HDR image pairs. The
proposed method does not require any HDR images at the
training stage. Instead, we implicitly leverage the exposure
statistics of real-world photographs used for DDPM train-
ing, which allows the model to reason on the underlying
radiance distributions. In single-image reconstruction, we
require as the input just one LDR exposure and then gener-
ate a stack of different spatially consistent LDR exposures.

3.1 Guided Diffusion

Data generation with a pre-trained DDPM [11] amounts to
gradual denoising of a sample x ∈ Ru using

xt−1 := 1√
αt

(xt − (1− αt)∇xt
log pt (xt)) + zt (1)

This update rule involves a noise schedule αt ∈ R+, random
vectors zt ∈ Ru , and, a score function, ∇xt

log pt (xt).
In the framework of diffusion posterior sampling (DPS)
[1], an additional guiding signal y ∈ Rw such as a partial
observation of x, is incorporated into the denoising process
to arrive at the posterior score.

∇xt
log pt (xt | c,y) ≈ sθ (xt, c, t)− λ∇xt

C (x̂t,y) (2)

Here, C ∈ (Ru × Rw) → R is a problem-specific consistency
measurement term that drives the denoising process
towards solutions that incorporate the guiding signal y,
and λ ∈ R+ is a balancing term. For increased stability, [1]
propose to feed the current estimate of the clean sample,

x̂t =
1√
αt

(xt + (1− αt) sθ (xt, c, t)) (3)

to C , where αt is derived from αt.

3.2 Exposure diffusion

The above equations Eq. 1 and Eq. 2 are valid for producing
a single LDR result image x. The key idea is to produce
HDR by fusing multiple generated LDR results. Hence, we
operate on a set of LDR images,

{
x−m, . . . , x0, . . . , xn

}
,

called ”brackets”. Positive and negative superscripts
denotes positive and negative EVs, respectively. All
brackets are initialized to noise with mean zero and
standard deviation one. They, further, need to be gamma-
corrected sRGB LDR images, as we consider the score
function a black box that cannot be retrained to work on
linear HDR.

Score term The first term in Eq. 2 is the common
score function that points from the current solution into
the direction of a more plausible one. It may or may not
be conditioned as per the second column of Tab. 1, leading
to different application scenarios. It is a black box we do
not need to know any details of, nor differentiate, as it
already encodes a gradient. We only need to know its noise
schedule αt to also use x̂ from Eq. 3. The score function
is hence simply computed on each bracket independently.
The scoring function in our implementation is a pretrained
diffusion model trained on a specific dataset.

Posterior term The second term in Eq. 2 is very specific
to this problem, the exposure consistency cost term. The
consistency of two brackets measures how much x̂i, a
free variable, is compatible with another bracket x̂r that is
assumed fixed. For each bracket x̂i , the reference bracket x̂r

is exposed to another bracket, and the resulting differences
are checked using a function exco .

C
(
x̂i,y

)
=


C↓

(
x̂ix̂i+1

)
, if i < 0, see Eq. 5,

C↑
(
x̂i, x̂i−1

)
, if i > 0, see Eq. 6 and

C0

(
x̂i,y

)
, if i = 0, see Eq. 7.

Both positive and negative posterior make use of two
mask functions sat and dark which are one for saturated
and near-zero pixels, respectively, and zero otherwise.
In practice, we use smooth versions of that for better
differentiability; a very smooth function sat(x)= x and
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Fig. 2. The LDR brackets are generated with the guiding term given as a sample image from the Diffusion project. 5 ”brackets” are created for each
image and they are fused using Debevec’s technique and Drago tonemapping

dark(x)= 1 - x provides the best results.

The posterior for decreasing exposure is

C↓
(
x̂i, x̂r

)
=

∥∥sat (x̂r) ·max
(
exco

(
x̂r → x̂i

)
, 0
)∥∥

2
+

λs ·
∥∥(1− sat (x̂r)) ·

(
exco

(
x̂r → x̂i

))∥∥
2
,

(5)

while the one to increase exposure is

C↑
(
x̂i, x̂r

)
=

∥∥dark (x̂r) ·
(
exco

(
x̂r → x̂i

))∥∥
2
+

λd ·
∥∥(1− dark (x̂r)) ·

(
exco

(
x̂r → x̂i

))∥∥
2
,

(6)

where λs and λd are set to 1 and 2, respectively. Note
that in Eq. 6, the two terms are weighted differently. This
is because the darker regions dark x̂r are usually noisy or
unreliable; thus, we impose less exposure consistency prior
on these regions compared to the brighter regions.

The consistency of exposure exco of one LDR bracket x̂i

with respect to a reference x̂r (which can both be higher or
lower EV) is defined as

exco
(
x̂r → x̂i

)
:=

(
min

((
βi

βr ⊙ (x̂r)
−γ

)
, 1
))γ

− x̂i

where β stands for exposure time. We first undo the
gamma (γ= 2.2), as the solution has to live in non-linear
space for the black box score. Next, we scale by the ratio
between the exposure times and then clamp and apply
gamma again, as a real camera would. The result has
returned to the domain an LDR score function can handle
and is compared to the bracket x̂i in question.

Finally, we can also define an optional posterior term
on the original image by applying a function f :

C0

(
x̂i,y

)
= λc ·

∥∥f (
x̂i
)
− y

∥∥
2

(7)

In this implementation, this Eq 7’s guiding term y is the
initial LDR image and we use the additional DPS step of

subtracting the gradient of the likelihood prior.

4 IMPLEMENTATION AND RESULTS

The baseline code used for this implementation is the DDPM
and DPS task from the Diffusion Project. the LDR to HDR
fusion is implemented using Debevec’s technique seen in
the EE367 class and homework.

For this implementation, we use the pretrained diffusion
model trained on the FFHQ dataset directly given in the
Diffusion Project. The input images are downsampled to
256 x 256, and I have implemented 1500 denoising steps to
produce the results.

In the original implementation of the paper: ”Exposure
Diffusion: HDR Image Generation by Consistent
LDR denoising”, they use text-based or histogram-
based conditioning for initial image generation. In my
implementation, due to the limited time, I’ve used two
LDR images from the sample data provided in the diffusion
project. Eq 1 through 7 shown above are implemented in
python The hyper-parameterλ in Eq. 1 balances between
the diffusion prior and our posterior term. This is the
lambdadps that’s a tuning parameter in the code. It’s set to
3 for the current implementation.

For the two qualitative results (Fig 2) , we compute
five exposure brackets: EV-4, EV-2, EV+0, EV+2, and
EV+4, unless otherwise specified. These exposure brackets
are merged using the standard technique [Debevec and
Malik 1997] to create our HDR image. Drago tonemapping
technique is used from openCV, and fused and tone mapped
image for various scales and gammas are generated. the
visually better one is picked for demonstrating the results
here, but the code generates all the combinations (as seen in
a previous homework).

Code The code to the exposure diffusion implementation as
well as the LDR to HDR fusion can be found in the drive
link here:

Click here to visit drive link

https://drive.google.com/drive/folders/1oRrOlIFbhv-8hKoHdLRD84hS4GxMpR7D?usp=sharing
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Fig. 3. Unconditional generation of exposure brackets without any guidance

5 DISCUSSION AND CONCLUSION

This project is able to provide a qualitative result and
discussion. Since it is image generation using DPS, and
since we dont have a ground truth HDR image to compare
with, I’m not able to provide quantitative results.

One way to evaluate the model here is to take a good,
non-saturated, no shadow image, change it’s exposure ratio
to make it saturated, run the saturated image through the
DPS denoising steps, and fuse it to form HDR image. then
compare the HDR image with the initial non-saturated,
no shadow good image. This however has not been
implemented in this case.

One issue that is noted is that without Eq 7’s
implementation, or without introducing the conditioning
using the initial sample image, each exposure bracket is
different from the other, which implies that the consistency
term plays a significant role in ensuring that the same
image is generated across the different brackets using the
prior of the sample image passed to the model. An example
of random generation is shown here, where all the brackets
are quite noisy. Another concern is that even in the correctly
generated exposure brackets, some low exposure brackets
are quite noisy, and the tuning parameter for both the
consistency term as well as number of sampling steps had
to be varied to produce a reasonable set of brackets for
HDR fusion.

Since the brackets themeselves are noisy, the fusion using
Debevec’s method did not yield visually good results for
both the samples. This could be due to not enough tuning
of the scale, saturation, bias and gamma, but could also be
due to the generated brackets.

5.1 Limitations of proposed method
The proposed method uses a pretrained diffusion model
trained only on face data (the FFHQ dataset). The con-
sistency term does not take into account face-specific fea-
tures when dealing with face data. The model is only
trained on faces, so it lacks knowledge of general scenes
with diverse textures, lighting, and objects.The exposure
correction relies on a simple gamma-based transformation,
which does not capture the diverse lighting effects seen in
real-world scenes.Exposure consistency relies on L2 loss,
which assumes small perturbations—but faces do not have
extreme lighting variations like general HDR scenes.The
posterior correction assumes that the noisy input follows a
learned prior distribution, but faces have much less lighting

variance than general images.You may find that gradexco is
always None or zero, meaning the exposure correction has
no effect on guiding the diffusion process.

5.2 Future Work

The exposure consistency term assumes a simplified gamma
correction model, which does not accurately reflect real-
world sensor noise, highlight clipping, or tone mapping be-
haviors.Replacing gamma-based exposure correction with
a learned differentiable exposure transformation would be
useful. Introducing adaptive weighting for the exposure
consistency loss, so it ignores extreme outliers (e.g., satu-
rated regions) may improve the quality of the generated
brackets.

In future work, It would be interesting to extend the pre-
sented ideas to other modalities involving multiple images,
like multi-spectral, stereo, light fields, and combinations
thereof.
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