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Developing an Image Processing Pipeline for
DSLR Astrophotography Using Classical and

Deep Learning Methods
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Abstract—Amateur astrophotography using DSLR cameras often suffers from star trails, non-uniform backgrounds, and high noise
levels, resulting in lower image quality compared to professional setups. To address these challenges, we developed an automated
image processing pipeline that compares classical signal processing methods with neural network-based approaches. The classical
method includes background gradient removal, PSF motion blur kernel estimation, Richardson-Lucy deblurring, and non-local means
denoising, while the neural network method employs a multi-stage model for denoising, background removal, and deblurring. Our
experiments show that classical methods excel in precise background gradient extraction and PSF estimation, whereas neural
networks generalize better across diverse conditions. This work provides a robust solution for enhancing amateur astrophotography,
making it more accessible and achieving results closer to professional standards.
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1 INTRODUCTION

AMATEUR astrophotography using DSLR cameras has
grown in popularity due to its affordability and acces-

sibility. However, capturing high-quality images of celestial
objects presents significant challenges, including motion
blur from camera movement, non-uniform background il-
lumination caused by light pollution, and high noise levels
due to low-light conditions. Unlike professional observato-
ries, which employ high-precision tracking mounts, adap-
tive optics, and cooled CCD sensors, amateur setups rely on
consumer-grade equipment that lacks these advanced fea-
tures. As a result, DSLR astrophotographers often struggle
with star trailing, poor contrast, and degraded image clarity.

In this project, we develop and compare two approaches
for improving DSLR astrophotography: a classical image
processing pipeline and a multistage neural network. The
classical pipeline includes steps such as background gra-
dient removal, Point Spread Function (PSF) motion blur
kernel estimation, Richardson-Lucy deblurring, and non-
local means denoising. The neural network approach, on the
other hand, employs a multi-stage model to perform denois-
ing, background removal, and deblurring in an end-to-end
manner. By evaluating the strengths and limitations of each
method, we aim to provide a robust solution that bridges the
gap between amateur and professional astrophotography.

This work focuses on enhancing images of star fields
and deep-sky objects, addressing common issues such as
star trailing, non-uniform background, and noise. Our goal
is to make high-quality astrophotography more accessible
to enthusiasts, enabling them to achieve results closer to
professional standards using affordable DSLR equipment.
Through this project, we explore the potential of combining
classical and neural network-based methods to create a
more effective and realistic image processing pipeline.

Fig. 1. Example Star Images Captured by DSLR Cameras with Star
Streaks, Background Gradient, and Noises

2 RELATED WORK

Image restoration, particularly in astrophotography and
low-light conditions, has seen significant advancements in
both classical and deep-learning-based approaches.

Many researchers have explored classical methods for
low-light and astrophotography image restoration. Wiener
and Richardson-Lucy deconvolution can effectively remove
light trails [1]. However, in astrophotography, variations in
the blur kernel caused by exposure time, tripod motion, and
atmospheric conditions make determining the Point Spread
Function (PSF) challenging. Traditional methods often
rely on blind deconvolution and PSF estimation to correct
motion blur and enhance image clarity. Hu et al. introduced
a non-linear blur model that explicitly utilizes light streaks
as constraints for estimating motion blur kernels [2]. They
used a power-spectrum-based metric for selecting the
best light streak, approximating the blur kernel’s power
spectrum directly from the input image. This approach
proved effective where strong light streaks are present,
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providing rich blur information. However, the method
struggles with scenes lacking sufficient light streaks and
can be adversely affected by saturation artifacts. Expanding
on this idea, Su et al. incorporated a thinning algorithm to
estimate motion blur in astronomical star images [3]. Their
method refines the Richardson-Lucy deblurring approach
by extracting more accurate motion blur kernels based on
the trajectory of blurred stars, enabling better restoration
of astrophotography images. Although effective for linear
motion blur, their approach faces difficulties with complex
rotational blur and spatially varying distortions common in
astrophotography.

To address similar issues, other fields have used ADMM-
based blind deconvolution and denoising techniques from
low-photon fluorescence imaging [4]. Background removal
in astrophotography has been approached through various
techniques, including background subtraction, wavelet-
based denoising, and filtering. For instance, [5] combines
Gaussian filtering, background subtraction, histogram
equalization, and Otsu’s thresholding to address non-
uniform backgrounds in astronomical images.

Recently, neural network-based approaches have
gained attention in low-light and astrophotography image
enhancement due to the availability of larger datasets and
advancements in deep learning. [6] introduced MPRNet,
a multi-stage progressive image restoration network
designed for denoising, deblurring, and dehazing. Each
stage refines an intermediate output passed to subsequent
stages, effectively managing the complexity of restoration
tasks. Building upon MPRNet, Restormer [7] further
improved image restoration by employing Transformer
blocks, enabling better global context capturing. Restormer
excels in multiple tasks such as deblurring, motion
deblurring, denoising, and deraining, demonstrating
superior performance and flexibility. Nevertheless, these
general-purpose methods are not specifically tailored
for astrophotography, which has unique sparsity and
noise characteristics. To address astrophotography-specific
challenges, [8] proposed a deep learning approach
integrating band-dependent PSF information into the
deconvolution process, applying Wiener deconvolution
separately to each color band. For motion blur correction,
[9] estimated motion blur kernel parameters using hyper-
Laplacian priors and an ensemble neural network, enabling
robust deblurring of star images.

Although these approaches show promising results,
there is no dedicated imaging pipeline designed specifically
for DSLR astrophotography, particularly at the amateur
level. Developing such a pipeline could make astrophotog-
raphy more accessible to a broader audience.

3 PROPOSED METHOD

To address the issues DSLR cameras face when capturing
astrophotography, we proposed two sets of approaches: the
classical approach and the deep learning-based approach,
and doing comparison between them.

3.1 Classical Approach
Our image restoration pipeline consists of several key

steps aimed at improving the quality of astrophotography
images by correcting motion blur, reducing noise, and en-
hancing contrast while preserving star details. Each step
is carefully designed to address the specific challenges
posed by DSLR astrophotography, particularly star trailing,
background inconsistencies, and sensor noise. The work-
flow includes background gradient removal, PSF estimation,
Richardson-Lucy deblurring, non-local means denoising,
and selective star enhancement.

3.1.1 Background Gradient Removal
Firstly, astrophotography images often exhibit non-

uniform background illumination due to light pollution,
sensor inconsistencies, or natural sky brightness variations.
Direct contrast enhancement without handling these gradi-
ents can lead to loss of faint celestial objects and inaccurate
star reconstruction. To mitigate this, we use morphological
opening with an elliptical kernel to estimate and subtract
the large-scale background gradient while preserving star
details. That is, given an input image I and a structuring
element (kernel) B, morphological opening is defined as:

I ◦B = (I ⊖B)⊕B

where: ⊖ represents erosion (shrinking objects by remov-
ing pixels from boundaries). ⊕ represents dilation (expand-
ing the eroded image back).

3.1.2 PSF Blur Kernel Estimation
Then, to correct star trailing and motion blur, we must

first estimate the Point Spread Function (PSF), which rep-
resents the blurring pattern caused by the Earth’s rotation
or camera movement during long exposures. Since the PSF
varies across images, we dynamically estimate it from the
brightest star in the scene.

3.1.3 Richardson-Lucy Deblurring
Once the PSF is estimated, we apply the Richardson-

Lucy (RL) deconvolution algorithm to recover sharp star
details. RL deconvolution is based on Bayesian probability
and Maximum Likelihood Estimation (MLE). It uses an
iterative approach to refine an estimate of the sharp image
I, given the blurred image B and the known PSF. In each
iteration, we do the following steps:
(1) Estimate the Blurred Image

B′ = I ′ ∗ PSF

where I’ is the current estimate of the sharp image.
(2) Compute the Ratio of Actual Blurred Image to Esti-

mated Blurred Image:

R =
B

B′ + ϵ

where ϵ is a small constant to prevent division by zero.
(3) Apply the Correction:

I ′new = I ′ × (R ∗ PSFflipped)

This updates I ′ using the flipped PSF to refine the estimate.
(4) Iterative Refinement: this process is repeated for multiple
iterations until the image is sufficiently sharpened.
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3.1.4 Non-local Means Denoising
Even after deblurring, the image may contain high-

frequency noise from the camera sensor, low-light condi-
tions, or deconvolution artifacts. To mitigate this, we apply
Non-Local Means (NLM) denoising, which is effective at
preserving fine details while suppressing noise.

3.1.5 Selective Star Enhancement
While deblurring restores structural details, stars may

appear less prominent due to overall contrast adjustments.
To address this, we apply a selective star enhancement
technique using a binary star mask. That is, the star mask
is 1 for bright stars and is 0 for background. So we keep
the deblurred foreground and the denoised background by
blending them smoothly.

3.2 Deep Learning-Based Approach
While the classical approach is effective in many

scenarios, it faces several limitations. Classical denoising
techniques such as Non-Local Means (NLM) struggle
to differentiate between fine celestial details and sensor
noise, often leading to excessive smoothing and loss of
faint objects. Background removal techniques that rely on
morphological operations can introduce overcorrections,
particularly in images containing extended nebulae or
diffuse astronomical structures. Motion blur correction
using deconvolution-based methods, such as Richardson-
Lucy deconvolution, requires an accurately estimated Point
Spread Function (PSF), which is difficult to determine due
to variations in optical distortions. Moreover, the classical
approach often require manual parameter tuning, making it
less adaptable to diverse astrophotographic conditions, and
often could take long computational time.

To overcome these limitations, we propose
StarEnhancementNet, a deep learning-based multi-
stage pipeline designed for progressive astrophotography
image restoration. The network consists of four key stages:
denoising, background removal, star streak correction, and
end-to-end fine-tuning. Each stage is trained independently
with task-specific objectives before a joint optimization step
ensures optimal restoration performance.

StarEnhancementNet is inspired by MPRNet [10], and
is designed as a progressive pipeline where each stage is
responsible for a specific restoration task. The first three
stages operate as independent modules, handling denois-
ing, background removal, and structured artifact suppres-
sion. The final stage integrates these modules through end-
to-end optimization, allowing the network to learn joint
feature representations for improved restoration quality.

3.3 Stage 1: Denoising via DnCNN
The first stage removes sensor noise and low-light arti-

facts using DnCNN, a deep residual convolutional network
optimized for blind Gaussian denoising. Unlike direct de-
noising models, DnCNN learns to predict the noise com-
ponent, subsequently subtracting it from the input image.
Given an input image X , the noise component N̂ is esti-
mated as:

N̂ = f(X; θ) (1)

where f represents the DnCNN network parameterized
by weights θ. The denoised image Î is reconstructed as:

Î = X − N̂ (2)

The DnCNN architecture consists of:

• Input convolutional layer: Extracts initial low-level
features.

• 15 intermediate convolutional layers: Each followed
by batch normalization and ReLU activations for
deep feature learning.

• Final convolutional layer: Outputs the noise resid-
ual map to subtract from the input image.

Training utilizes a combined L1 loss with additional
brightness and color consistency constraints, defined as:

Ltotal = L1 + α · Lbrightness + β · Lcolor (3)

where α and β can be tuned, ensuring accurate denois-
ing while preserving fine astronomical features.

3.4 Stage 2: Background Removal via CNN

The second stage employs a convolutional neural net-
work trained to adaptively remove large-scale background
illumination gradients without manual parameter tuning.
Unlike traditional handcrafted methods, this CNN directly
learns background gradient patterns from paired datasets.

The architecture comprises:

• Sequential convolutional layers (3×3 kernels), each
followed by ReLU activations, designed to learn
and subtract background illumination patterns adap-
tively.

Training data for Stage 2 directly uses the denoised
output from Stage 1 as input. The loss function remains
consistent (L1 loss combined with brightness and color con-
sistency) to ensure preservation of astronomical structures.

3.5 Stage 3: Star Streak Correction via Simplified MPR-
Net

Stage 3 addresses star streak artifacts resulting from cam-
era movement or Earth rotation using a simplified MPRNet:

• Encoder: Two convolutional layers capture local and
global multi-scale features, compressing information
into deeper feature maps.

• Decoder: Upsampling layers restore spatial resolu-
tion, incorporating skip connections to retain essen-
tial spatial features.

• Output layer: Final 3×3 convolution reconstructs the
corrected image, eliminating structured blur artifacts.

Stage 3 training uses synthetic training data with star
streaks generated by applying randomized linear and
curved motion blur kernels to background-removed images
from Stage 2.
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Fig. 2. Classical Approach Image Processing Pipeline

Fig. 3. Deep Learning-Based Image Approach Processing Pipeline and
Model Architectures

3.6 Stage 4: End-to-End Fine-Tuning

The final stage jointly optimizes the pipeline by fine-
tuning all previous stages simultaneously. It employs the
same combined loss function (L1 loss with brightness and
color consistency) to maintain training consistency across
the pipeline. Optimization uses the Adam optimizer with
a constant learning rate of 1 × 10−4. This fine-tuning stage
ensures seamless integration and enhanced generalization
capability.

3.7 Training and Data Generation

Training datasets are explicitly generated for each stage
as follows:

• Stage 1 (Denoising): Randomly extracted 256× 256
patches from raw astrophotography images with no
star streaks but with noises and non-uniformed back-
ground, mildly denoised using the non-local means
algorithm.

• Stage 2 (Background Removal): Background re-
moval performed using Gaussian blur (31×31 kernel)
applied to Stage 1 outputs, followed by partial sub-
traction:

I ′ = clip(I − α ·Gσ=31(I), 0, 255)

where α = 0.9, controlling background retention.
• Stage 3 (Deblurring): Synthetic star streak artifacts

created using linear and curved motion blur kernels

with randomized angles and curvature parameters,
applied to Stage 2 background-removed images:

Istreaked = IStage2 ∗Kmotion-blur

• Stage 4 (All-in-One Degradation): Composite degra-
dation applied simultaneously (random Gaussian
noise σ ∈ [5, 25], partial background reintroduction
with Gaussian blur, and synthetic star streaks) to
Stage 2 images:

Ifinal = Streak
(
PartialBG

(
Noise(IStage2)

))
The entire dataset consists of around 200 pairs of images

for training and around 80 pairs of images for validation.
All networks within the pipeline were trained on a

system running Ubuntu Linux, equipped with an NVIDIA
GeForce RTX 3080 GPU. Training utilized PyTorch with
CUDA acceleration for efficient computation.

Each pipeline stage was independently trained as fol-
lows:

• Stage 1 (DnCNN Denoising): 800 epochs with a
batch size of 8, learning rate of 1× 10−4.

• Stage 2 (Background Removal CNN): 800 epochs,
batch size of 8, learning rate of 1× 10−4.

• Stage 3 (Simplified MPRNet Deblurring): 1000
epochs, batch size of 8, learning rate of 1× 10−5.

• Stage 4 (End-to-End Fine-Tuning): 300 epochs, batch
size of 8, learning rate of 1× 10−4.

The Adam optimizer was consistently employed across
all stages to optimize the models’ parameters. The training
performance was monitored through validation loss and
PSNR metrics computed after each epoch to detect conver-
gence and potential overfitting.

Model checkpoints were periodically saved (every 50
epochs and at training completion) to enable monitoring
of intermediate restoration performance and facilitate fine-
tuning. Also, visual validation examples were generated
at intervals to qualitatively assess improvement over the
training epochs. Additionally, all training images were nor-
malized to a [0,1] range to ensure numerical stability and
faster convergence.

4 EXPERIMENTS & RESULTS

To evaluate the effectiveness of our proposed methods,
we conducted a series of experiments using both single
blurred astrophotography images (without ground truth)
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and paired datasets captured specifically for quantitative
analysis. We compare our methods against established clas-
sical and deep learning-based methods, namely Hu et al. [2]
and Restormer [7], respectively.

We first ran experiments using single blurred images
without corresponding ground truth data. These blurred im-
ages were processed through our proposed classical pipeline
and the deep learning-based StarEnhancementNet. Results
from our methods were then visually compared side-by-
side against outputs from Hu et al.’s classical approach
and the Restormer neural network. This initial qualitative
assessment allowed us to observe differences in deblurring
capabilities, noise reduction, and background uniformity
among the methods.

Subsequently, to enable quantitative evaluation, we cap-
tured our own ground truth and blurred image pairs using
a Canon 90D DSLR camera, equipped with an APS-C CMOS
sensor (32.5 Megapixels, sensor size: 22.3 × 14.9 mm). The
images were captured with exposure times ranging between
10 to 20 seconds and ISO settings between 400 to 800.
These pairs provided a reliable dataset for calculating image
quality metrics.

4.1 Evaluation Metrics
To objectively evaluate the restoration quality, we em-

ployed two standard image quality metrics: Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM).

Peak Signal-to-Noise Ratio (PSNR) quantifies the pixel-
level reconstruction accuracy between the restored image
and the ground truth. PSNR is defined mathematically as:

PSNR = 10 · log10
(
MAX2

MSE

)
(4)

where MAX represents the maximum possible pixel inten-
sity value of the image (255 for 8-bit images), and MSE
(Mean Squared Error) is computed as:

MSE =
1

mn

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]2 (5)

Here, I is the restored image, K is the ground-truth image,
and m,n denote image dimensions. Higher PSNR values
indicate better restoration performance, typically above 30
dB for visually pleasing results.

Structural Similarity Index Measure (SSIM) evaluates
the perceptual similarity between two images by comparing
luminance, contrast, and structural information. SSIM is
calculated as:

SSIM(I,K) =
(2µIµK + C1)(2σIK + C2)

(µ2
I + µ2

K + C1)(σ2
I + σ2

K + C2)
(6)

where:

• µI , µK are the mean pixel values of images I and K ,
respectively.

• σ2
I , σ

2
K denote the variances of images I and K .

• σIK is the covariance between I and K .
• C1 = (k1L)

2, C2 = (k2L)
2 are stabilization con-

stants, with L being the dynamic range of pixel val-
ues (255 for 8-bit images), and k1 = 0.01, k2 = 0.03
are constants.

SSIM values range between -1 and 1, with values closer to 1
indicating higher perceptual similarity and superior visual
quality.

4.2 Results Analysis

The experimental results are presented in Figures 5, 6,
and 4. Quantitative metrics (PSNR and SSIM) are indicated
below each corresponding restored image in Figures 5, 6.

Upon analyzing the quantitative metrics, our proposed
methods achieved relatively high PSNR and SSIM scores
comparable to those obtained by Restormer, which is a
complex, transformer-based deep neural network trained
on more than 5,000 image samples. Notably, our deep
learning-based method was trained on significantly fewer
images (approximately 200), yet achieved competitive re-
sults. Specifically, our deep learning method resulted in
PSNR values around 30 dB, demonstrating its ability to
accurately reconstruct sharp celestial details and remove
star streak artifacts.

A detailed visual analysis supports these quantitative
findings. In the qualitative comparisons, our deep learning-
based approach effectively removed motion-induced star
streaks, suppressed sensor noise, and corrected non-uniform
background illumination. Restormer, despite its extensive
training dataset, demonstrated limitations in adequately
correcting motion blur in astronomical images, leaving
residual streaks visible. Furthermore, our classical method
successfully performed both deblurring and denoising
tasks, yielding visually clear and sharp star fields when
compared with the Hu et al.’s [2] classical approach. How-
ever, our deep learning-based method occasionally over-
smoothed very faint stars, resulting in a loss of visibility
for smaller celestial objects in the final output.

Moreover, we evaluated and compared the computa-
tional efficiency of both the classical and deep learning-
based restoration methods. For an astrophotography image
of resolution 6960×4640×3 (approximately 39MB JPEG file
size), the classical approach pipeline requires approximately
90–100 seconds to process a single image. In contrast, our
proposed deep learning-based method, StarEnhancement-
Net, significantly reduces the processing time, taking ap-
proximately 50 seconds per image on an NVIDIA GeForce
RTX 3080 GPU with CUDA acceleration.

This computational improvement highlights the effi-
ciency of the deep learning approach, making it preferable
for large-scale astrophotographic restoration tasks where
processing time is critical.

In summary, our experimental evaluation demonstrates
the effectiveness of both the classical and the proposed
deep learning-based approaches presented in this work.
The classical pipeline utilizes traditional image process-
ing methods, offering competitive restoration performance.
Our proposed deep learning-based method, StarEnhance-
mentNet, achieves restoration performance comparable to
state-of-the-art transformer-based architectures despite be-
ing trained on a significantly smaller dataset. This highlights
its practical potential and computational efficiency, making
it suitable for real-world astrophotographic image restora-
tion tasks.
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Fig. 4. Qualitative comparison of our proposed classical and deep learning-based methods against Hu et al. [2] and Restormer [7]

Fig. 5. Visual and quantitative comparisons of our proposed methods with Restormer [7] and our classical approach on real image pairs.

Fig. 6. Visual and quantitative comparisons of our proposed methods with Restormer [7] and our classical approach on real image pairs.

5 DISCUSSION & CONCLUSION

In this project, we developed two automated image
processing pipelines to address key challenges in DSLR
astrophotography, such as star streaks (motion blur), non-
uniform backgrounds, and high noise levels. By exploring
both classical and neural network-based methods, we eval-
uated their strengths, weaknesses, and overall effectiveness
in enhancing astrophotography images.

Classical image restoration techniques demonstrated
strong performance in tasks such as background gradient
extraction and Point Spread Function (PSF) kernel estima-
tion. These methods rely on well-established mathematical
models and signal processing techniques, making them
highly effective at accurately identifying motion blur pat-
terns and compensating for light pollution effects. How-
ever, their computational complexity, particularly for high-
resolution images, remains a significant drawback. Process-
ing a single image using classical deblurring algorithms can
take several minutes, making them impractical for real-time
or large-scale applications.

In contrast, deep learning-based neural network ap-
proaches offered greater efficiency and generalization across
diverse astrophotographic conditions. Our experiments
showed that neural networks achieved higher PSNR and
SSIM scores, indicating superior image clarity and noise re-
duction. Additionally, neural networks proved more adapt-
able to varying imaging conditions, requiring minimal pa-
rameter tuning to perform well across a wide range of
inputs. However, we observed that neural networks some-
times over-deblurred images, inadvertently removing small

stars and faint celestial details, which reduced the realism of
the final output.

To address these limitations, we propose a hybrid ap-
proach that combines the strengths of both methods. By
integrating precise gradient extraction and PSF estimation
from classical processing as priors for the neural network,
we aim to refine the model’s ability to differentiate between
noise and fine astrophotographic details. This hybrid ap-
proach has the potential to preserve faint celestial structures
while enhancing overall image clarity.

Despite these improvements, our current implementa-
tion has several limitations. The neural network was trained
on a relatively small dataset of 200 paird of images, po-
tentially restricting its robustness and generalization. Ex-
panding the training dataset with a larger and more diverse
collection of real astrophotography image pairs will be a
critical next step. Furthermore, our pipeline currently pro-
cesses JPEG images, which inherently contain compression
artifacts and reduced dynamic range. Transitioning to RAW
image processing will allow us to leverage higher bit-depth
information and richer sensor data, enabling more precise
restoration and enhanced professional image quality.

In conclusion, this project demonstrates the potential of
combining classical and neural network-based approaches
to achieve efficient, high-quality astrophotographic image
restoration. By leveraging the precision of classical methods
for PSF estimation and background normalization alongside
the adaptability of deep neural networks, we can develop
a more effective and realistic image processing pipeline.
Future work will include training the neural network on
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a larger dataset, incorporating RAW image processing for
greater detail preservation, and optimizing the hybrid ap-
proach to balance computational efficiency, image realism,
and restoration accuracy. These advancements will further
empower amateur astrophotographers to capture and re-
store professional-quality astrophotography images using
accessible DSLR equipment.
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