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Diffusion Models as Generative Priors for
Inverse Problems
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Abstract—Diffusion models [1] are a class of generative models that synthesize data by progressively denoising a noisy input through
a Markov process consisting of a forward and reverse process. In this work, we explore their application to inverse problems such as
inpainting and deconvolution. Specifically, we apply three diffusion-based methods to these inverse tasks: Score Distillation Editing
(SDEdit) [2], Score Annealed Langevin Dynamics (ScoreALD) [3], and Diffusion Posterior Sampling (DPS) [4]. We use a pre-trained
diffusion model trained on the FFHQ dataset [4] with a variance-preserving formulation. Our findings indicate that DPS achieves the
highest PSNR and LPIPS values, making it the most effective for solving inverse problems with high perceptual similarity. While SDEdit
performs suboptimally for inverse problems at higher noise levels, it excels as an image editing framework, allowing controlled
modifications based on a prior.

Index Terms—Diffusion Models, Inverse Problems, Inpainting, Deconvolution, Diffusion Posterior Sampling, Langevin Dynamics,
ScoreALD, SDEdit
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1 INTRODUCTION

Diffusion models [1] are a class of generative models
that learn to synthesize data by gradually denoising a noisy
input. In this work, we explore their capabilities in image
generation, denoising, inpainting, and deconvolution.

Specifically, we use diffusion model-based methods for
the following tasks:

• Unconditional Image Generation from Noise
• Single Step Image Denoising

We also apply diffusion based methods to inverse prob-
lems - specifically Inpainting and Deconvolution via three
methods:

• Score Distillation Editing (SDEdit) [2]
• Score Annealed Langevin Dynamics (ScoreALD) [3]
• Diffusion Posterior Sampling (DPS) [4]

For these tasks, we use a pre-trained diffusion model
[4] that is trained on the Flickr-Faces-HQ Dataset (FFHQ)
dataset, and use the variance preserving formulation of
diffusion models [1].

2 RELATED WORK

Diffusion models [1] generate images from noise by lever-
aging a Markov process consisting of a forward and reverse
process. The forward process gradually adds Gaussian noise
to an image through multiple timesteps, effectively trans-
forming it into pure noise. The reverse process, parameter-
ized by a deep neural network, learns to iteratively denoise
and reconstruct a coherent image by estimating the noise at
each step.
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Fig. 1. Figure from Ho et al. 2020 [1], additionally annotated by Lilian
Weng.

The canonical task of diffusion models is denoising,
which enables two key applications: unconditional image
generation by progressively refining pure noise into
a coherent image and single-shot denoising, where a
corrupted image is restored in a single reverse step.

The forward process can be written as follows:

xt =
√
1− βtxt−1 +

√
βtzt−1 (1)

We can reparametrize this equation with αt = 1−βt and
ᾱt = Πt

i=1αi:

xt =
√
αtxt−1 +

√
1− αtϵt−1 where ϵt−1, ϵt−2, · · · ∼ N (0, I)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2

= · · ·
=
√
ᾱtx0 +

√
1− ᾱtϵ

Forward Process: Generating Noisy Images for a Given
Image:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱtI)) (2)
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Single Step Reverse Process: Generating Images from
Noise in a Single Step:

xt−1 =

√
αt(1− ᾱt−1)

(1− ᾱt)
xt +

√
αt−1(1− αt)

(1− ᾱt)
x̂0

Now, we substitute the following for x̂0:

x̂0 =
1√
ᾱt

(xt + (1− ᾱt)sθ)

Which, on simplification yields the following:

xt−1 =
1√
αt

(xt + (1− αt)sθ) (3)

Score-based model’s equivalence to error-based model:
The variance preserve form of Tweedie’s formula gives

us:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

x̂0 =
1√
ᾱt

[xt + (1− ᾱt)∇xt
log p(xt)]

On simplification, we have:
√
ᾱtE[x0|xt]− xt = (1− ᾱt)∇xlog pt(xt) (4)

xt−1 =
1
√
αt

[xt + (1− αt)sθ(xt, t)] (5)

=
1
√
αt

[
xt + (1− αt)

(
√
ᾱtE[x0|xt]− xt)

1− ᾱt

]
(6)

= · · · (7)

=
1√
αt

[
xt −

√
1− αt√
1− ᾱt

ϵθ

]
(8)

2.1 Image Generation from Noise

Here, we include results of unconditional image generation
from noise, using the pretrained diffusion model [4]:

Fig. 2. Examples of faces generated by the pretrained model starting
from noise.

2.2 Single Shot Denoising
Single-shot denoising skips the full, iterative reverse process
by directly estimating noise in a single step, using learned
priors.

Single Shot Denoising Algorithm:

s← −ϵ√
1− ᾱt

; x̂0 ←

√
1

ᾱt
(xt + (1− ᾱt)s) (9)

Here, we include results of single shot denoising for
different levels of noise. We see that as the noise increases,
we are not able to denoise the image with a high level of
perceptual similarity to the original image.

Fig. 3. Ground Truth (left), Noisy Input (middle), Model Result (right)
for noise levels t= 100, 250 and 500 (top to bottom)

3 DIFFUSION MODELS FOR INVERSE PROBLEMS

An inverse problem is generally framed as:

y = Ax∗ + w (10)

where y are a given set of measurements that one has
access to, A defines the transform on the original data x∗

- which is to be recovered. The term w refers noise that is
voerlayed on the data, which for the purposes of our work
we assume to be N (0, 1).

Specifically, we focus on two subcategories of inverse
problems: inpainting and deconvolution and apply three
diffusion-based approaches to solve them.

3.1 Inverse Problems via Score Distillation Editing
(SDEdit) [2]

Here we first take the input x0 and propagate it using the
forward process to a certain timestep tstart, after which
we iteratively apply the SDEdit Algorithm, to calculate
x̂0(xt) ∀ t = T − 1, · · · , 0.
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SDEdit Algorithm:

s← −ϵ√
1− ᾱt

(11)

x̂0 ←

√
1

ᾱt
(xt + (1− ᾱt)s) (12)

(13)
xt−1 ← q(x̂t−1|xt, x0) + σz where w ∼ N (0, 1) (14)

Fig. 4. Results for SDEdit applied to inpainting for t=250 (top), 500
(middle) and 750 (bottom)

Fig. 5. Results for SDEdit applied to deconvolution for t=250 (top), 500
(middle) and 750 (bottom)

3.2 Inverse Problems via Score Annealed Langevin Dy-
namics (ScoreALD) [3]:

The ScoreALD algorithm modifies the reverse process of the
diffusion model to also sample from the posterior distribu-
tion µ(x|y).

Sampling the posterior µ(x|y) using Langevin Dynam-
ics:

xt+1 ← xt + ηt∇xt log µ(xt|y) +
√
2ηtζt (15)

xt+1 ← xt + ηt

(
f(xt;βt) +

AH(y −Axt)

γ2
t + σ2

)
+

√
2ηtζt

(16)

where ζt ∼ N (0, 1).

Fig. 6. ScoreALD results for deconvolution (top) and inpainting (bottom);
σ = 0.05

3.3 Inverse Problems via Diffusion Posterior Sampling
(DPS) [4]:

The DPS algorithm, like ScoreALD algorithm also modi-
fies the reverse process of the diffusion model to sample
from the posterior distribution µ(x|y). However, the DPS
algorithm approximates this distribution with a term that
ultimately works out to reflect the “loss”term for the inverse
problem, as a function of x̂0.

Diffusion Posterior Sampling Algorithm:

xi−1 ← x
′

i−1 − ηi∇xi
||y −A(x̂0)||2; (17)

where ζi =
c

||y −A(x̂0(xi))||2
(18)

where for ∀i = N − 1, · · · , 0 we have xN ∼ Nc(0, I) and:

ŝ← sθ(xi, i); x̂0 ←
1√
α
(xi + (1− ᾱiŝ) (19)

x
′

i−1 ←
√
αi(1− ᾱi−1)

(1− ᾱi)
xi +

√
ᾱi−1βi

1− ᾱi
x̂0 + σiz (20)
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Fig. 7. DPS results for deconvolution (top) and inpainting (bottom)

4 CONCLUSION

Through this work, we explored the application of diffusion
models to inverse problems, inpainting and deconvolution
to be specific. We apply three algorithms in specific: SDEdit
[2], ScoreALD [3] and DPS [4].

We notice that the DPS approach results in the highest
PSNR and LPIPS values, and thus highest perceptual
similarity, and is thus best suited to solve inverse problems.

On the other hand, the SDEdit approach has its own mer-
its. Although the results it yields for the inverse problems
are subpar at higher noise levels, it can be used as an image
editing framework to generate new images based on a prior.
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