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Abstract—Diffusion models have emerged as powerful generative models capable of producing high-quality images. These models
work by iteratively denoising a randomly sampled noise image to generate realistic outputs. The ability to leverage diffusion models
extends beyond generation and into solving inverse problems such as image inpainting and deconvolution. This poster explores how
diffusion models can be used in these contexts and evaluates different methods for solving these tasks.

Index Terms—Diffusion Models, Image Generation, Inverse Problems, Image Inpainting, Deconvolution

1 MOTIVATION

IFFUSION models have emerged as powerful genera-
D tive models capable of producing high-quality images.
These models work by iteratively denoising a randomly
sampled noise image to generate realistic outputs. One of
the key strengths of diffusion models is their flexibility,
which allows them to be generalized to a wide range of tasks
beyond simple image generation, including image inpaint-
ing, deconvolution, super-resolution, and more. Compared
to traditional methods, diffusion models offer faster and
more efficient sampling processes, as they require fewer
steps to reach high-quality results. Additionally, they can
be applied to diverse domains, such as medical imaging,
computer vision, and even artistic image generation, mak-
ing them suitable for a wide array of real-world applica-
tions. This generalization potential allows diffusion models
to scale to more complex, high-dimensional tasks, making
them more versatile than many previous generative models
like GANs or VAEs.

The impact of performing these image tasks with diffu-
sion models is significant. In image inpainting, for example,
diffusion models can recover missing parts of an image in
a way that preserves both local structure and global co-
herence, improving the quality of reconstructed images. In
deconvolution tasks, diffusion models can reverse the effects
of image blurring, leading to sharper, more detailed recon-
structions. These advances have important applications in
fields ranging from medical diagnostics (where high-quality
reconstructions of incomplete or noisy data are crucial) to
image editing and restoration, opening the door to more
effective and efficient solutions for image reconstruction and
enhancement.

2 RELATED WORK

Diffusion models build on the foundations laid by earlier
generative models such as Generative Adversarial Net-
works (GANSs) [2], Variational Autoencoders (VAEs)[5], and
autoregressive models like PixelCNN][7]. These models have
each contributed to the advancement of image generation,
but they each come with their own strengths and limitations.
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Generative Adversarial Networks (GANs) consist of
two neural networks, a generator and a discriminator, that
are trained in opposition. The generator tries to create realis-
tic images, while the discriminator evaluates their authentic-
ity by distinguishing between real and fake images. GANs
have been widely used for high-quality image generation
due to their ability to generate sharp and realistic outputs.
However, they are often difficult to generalize to other tasks,
such as image inpainting or deconvolution. Additionally,
training GANs can be unstable, with issues such as mode
collapse, where the generator produces a limited variety of
images.

Variational Autoencoders (VAEs) work by learning a
latent space that captures the distribution of data. They then
use this latent space to generate new images by sampling
from it and decoding the samples into the image space.
VAEs are well-suited for tasks like interpolation and rep-
resentation learning. However, they tend to produce blurry
images because the model emphasizes a regularization term
that can lead to smooth reconstructions. VAEs also struggle
with generating images that capture fine-grained details,
making them less effective for high-resolution image gen-
eration tasks.

Autoregressive Models/PixelCNN generate images by
modeling the distribution of pixels sequentially, condition-
ing on the previously generated pixels. This approach en-
sures high-quality, pixel-wise accurate image generation.
While it excels in generating highly detailed images, it
suffers from slow sampling speeds because of the sequential
nature of pixel generation. This makes it less practical for
real-time applications or tasks requiring fast generation.

While these models have contributed to the field of
generative image modeling, diffusion models address some
of the inherent limitations of these approaches, particularly
in terms of flexibility, speed, and the quality of generated
images. Unlike GANs, VAEs, and autoregressive models,
diffusion models are more robust in various inverse problem
settings, such as image inpainting and deblurring, while
also generating high-quality images with greater stability
and less noise.



3 METHODS

We compare the following diffusion-based methods:

3.1 Baseline DDPM Sampling
3.1.1 Forward Diffusion Process (Noising)

In this work, we adopt the variance-preserving (VP) formu-
lation of diffusion models. The forward diffusion process
adds noise to the original data x( over T steps, as follows:

xt:\/l_ﬂtxt—l'i'\/ﬂtzt—la t=1,2,...,T,

where z;_; ~ N(0,1) and f; is the noise schedule. This
can be rewritten in terms of xg as:

Xt =vVarxg +V1—ayz,
where a; =1 — f5; and a; = szl ;.

3.1.2 Reverse Diffusion Process (Denoising)

The reverse diffusion process aims to recover the original
data by denoising x;. This can be written as:
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or equivalently using the noise prediction network ey:
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This formulation allows for the denoising of the image
in each step, progressively recovering the original data from
the noise.

Baseline DDPM:

Noising: Iteratively
add noise for T
steps

Denoising:
Remove noise for T
steps

Fig. 1. Baseline DDPM.

3.2 SDEdit

SDEdit[6] is a powerful framework for image synthesis. The
motivation behind SDEdit is to offer more flexible control
over image generation and modification by leveraging the
continuous noise perturbation process. It allows for fine-
grained control over the generation and editing process,
enabling tasks such as inpainting, super-resolution, and
even style transfer.

SDEdit starts with an image task. In our case, we looked
at inpainting and deconvolution. We first pass our ground
truth image through a measurement model, that adds the
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perturbation to the image, along with some measurement
noise.

y=Ax+e¢

Where A is the measurement matrix (e.g., a downsam-
pling operator or mask), and € is the noise term. We then
add noise to this image for a partial number of timesteps,
and learn the denoising process similar to DDPM.

SDEdit:

o

Denoising: Remove noise
for T = t timesteps

Measurement: Ax +
N(O,})

(Add perturbation and
measurement noise)

Noising: Add noise for
T =t timesteps

Fig. 2. SDEdit Process.

3.3 ScoreALD

ScoreALDI[4] builds off of unconditionally generating im-
ages to now adding a constraint using an annealing strategy
for more stable reconstructions. Specifically, we make use
the following process with a naive assumption.

ScoreALD:

X7 N.;\'f(O‘I)
fort=1T,..., 1 do
z~N(0.1)ift > l,elsez=0

Naive assumption:
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end for
return x;

Fig. 3. ScoreALD Process.

This reduces the difference from the original image to
the image denoised produced at the previous timestep.

3.4 DPSJ[1] (Diffusion Posterior Sampling)

The DPS method is similar to ScoreALD in that it intro-
duces a constraint on unconditional generation. Specifically,
it reduces the difference between measurement and this
time, the denoised out of the current timestep. This is to
potentially smooth the updates.

4 DATASET

The dataset used for experiments is the Flickr-Faces-HQ
Dataset (FFHQ).



Diffusion Posterior Sampling:

Improved
assumption:

xr ~ N(0,I)
fort=1T,..., 1 do
7z~ N(0,1)ifi > l,elsez=0
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end for
return xg
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5.2 Visual Comparisons and Ananlysis of Each Method

e Baseline DDPM: The Baseline DDPM tends to
smooth out images, often resulting in the loss of fine
details. While it is effective at retaining the main
components of an image, it struggles to preserve
intricate textures and small features, leading to a
more generalized and less detailed output. You can
see this in Figure 6, where the details of DiCaprio’s
beard or the red panda’s fur are lost.

Fig. 4. DPS Process.

Age and Ethnicity: The dataset includes faces from
individuals of various ages, ranging from infants to
elderly adults. It also has a wide representation of
different ethnicities, contributing to its diversity and
making it suitable for training generative models that
can generalize across diverse demographics.

Image Backgrounds: FFHQ images feature a vari-
ety of backgrounds, ranging from indoor settings to
outdoor environments. This variation helps models
trained on this dataset to learn to synthesize faces in
different contexts, with different lighting conditions
and background structures.

Accessories: The dataset contains a wide range of
accessories, such as eyeglasses, sunglasses, hats, and
more. These features are important for models fo-
cused on fine-grained facial feature generation and
manipulation, allowing them to learn to handle and
generate images with these diverse attributes.

Fig. 5. FFHQ Dataset.

5 EXPERIMENTAL RESULTS

5.1

Method Comparison

Method PSNR LPIPS
Baseline DDPM | 32.4588 | 0.0.0783
SDEdit 20.3665 0.21037
ScoreALD 29.26346 | 0.21039
DPS 27.4746 0.04443
TABLE 1

Best PSNR and LPIPS comparison for different methods.

SDEdit: SDEdit is capable of retaining all compo-
nents of the image, but it sometimes introduces
uncanny features, particularly in the background de-
tails. This may occur when the model faces difficulty
aligning the background with the rest of the image,
leading to inconsistencies or artifacts in the final
result.

ScoreALD: ScoreALD improves image sharpness by
utilizing an annealing factor that adds stability to
the denoising process. This allows the model to pro-
duce sharper, more detailed images compared to the
baseline, without the blurring often seen in simpler
diffusion methods. We can see the rest of the image
is fairly preserved, which is different from SDEdit.
Adjusting the annealing factor also allowed for better
results - for the deconvolution task, a value of 15-20
and 10-15 for inpainting.

DPS: DPS excels at removing blurry or blocked
portions of the image while still preserving impor-
tant details. The scaling factor employed by DPS
enhances feature retention, leading to more accu-
rate and detailed reconstructions, especially in areas
that would typically suffer from blurring in other
methods. I tested different values of the scale factor
and found that a higher scale factor worked better
for inpainting tasks (around 1.0), and a lower one
for deconvolution (around 0.3). I also experimented
with a new technique, adding a sampling rate, which
averages a number of samples at each time step. I
found that an increased number of samples produced
better results.

6 OVERALL ANALYSIS AND CONCLUSION

DPS outperforms other methods in both PSNR and Learned
Perceptual Image Patch Similarity (LPIPS). ScoreALD bal-
ances PSNR and LPIPS well with annealing strategies.
SDEdit is effective for controlled modifications but strug-
gles with background inconsistencies. However, there are a
diverse set of tasks, unrelated to image accuracy like style
transfer, that would be well-suited for SDEdit.

7 FUTURE WORK

Improving computational efficiency for real-time ap-
plications.

Exploring hybrid approaches combining diffusion
with transformer models.

Explore latent diffusion models.

Extending experiments to more diverse datasets be-
yond FFHQ.



Baseline DDPM:

T=200

PNSR: 28.59593299574286, LPIPS: 0.1828881800174713

T=500

PNSR: 32.458862342466524, LPIPS: 0.07835651934146881

Fig. 6. DDPM Baseline Results with different no. of timesteps.

Unconditional Generation:

Fig. 7. Sample results from unconditional generation.

SDEdit:
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PSNR: 20.366582139797345, LPIPS: 0.2103722244501114

Fig. 8. Inpainting and deconvolution results from SDEdit.

ScoreALD:

PSNR: 29.2634672224521637, LPIPS: 0.21039869T01114
Annealing Factor: 10-15

Fig. 9. Inpainting and deconvolution results from ScoreALD.

DPS:

Measurement No. of Samples: 10 No. of Samples: 50
PNSR: 24.605183300 PNSR: 27.4745873

Scale: 0.90 Scale: 0.95 Scale: 1.0
PNSR: 24 4852995 PNSR: 23.4829692 PNSR: 24 579156824

Fig. 10. DPS results with variable scale factor and sampling rate.

8 DEFAULT PROJECT

Task 1 Derivations:
https:/ /drive.google.com/file/d/1Yglry2{71rV-1_
-E9CM2P-Dvé6ltKqwls/view?usp=sharing
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