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Event-Based Intensity Reconstruction: A
Comparative Study of Filtering Techniques in

High-Speed Dynamic Environments
Myles Ragins

Abstract—Event-based vision sensors (EVS) offer high-speed, low-latency imaging, making them ideal for dynamic environments
such as autonomous vehicles, robotics, and surveillance. However, their inherent susceptibility to noise and artifacts presents
challenges in reconstructing high-quality intensity images. This paper evaluates the effectiveness of three noise filtering techniques -
Median Filtering, Wiener Filtering, and Anisotropic Diffusion - for event-based intensity reconstruction. By leveraging event frame
accumulation and systemic noise reduction strategies, we analyze their impact on visual clarity and Peak Signal to Noise Ratio (PSNR)
across high-speed scenes. Our experimental results indicate that while each technique offers unique benefits, Anisotropic Diffusion
achieves the best balance between noise suppression and edge preservation. This study provides practical insights into optimizing
event-based imaging systems, highlighting the trade-offs between real-time performance and image quality.
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1 INTRODUCTION

E VENT-based sensors (EVS) are rapidly gaining traction
in applications requiring high-speed, low-latency imag-

ing, such as autonomous vehicles, robotics, and surveil-
lance. Unlike traditional cameras, EVS capture changes in
intensity asynchronously at the pixel level, providing a data-
efficient representation of dynamic scenes. This capability
enables continuous updates, offering significant advantages
in real-time applications, particularly for tracking rapid
changes in the environment. Event-based data contributes
significantly to real-time intensity reconstruction by pro-
viding high temporal resolution, reduced motion blur, and
efficient data processing.

One of the primary benefits of event data is its high
temporal resolution, allowing for continuous updates rather
than being constrained by fixed intervals, as is the case with
frame-based imaging. This continuous updating provides
a significant advantage in tracking rapid scene changes,
ensuring that even the most dynamic elements of the scene
are captured with high accuracy.

Moreover, event data helps reduce motion blur, a com-
mon issue with traditional frame-based methods that often
struggle to capture fast movements without distorting the
image. Since event data is not constrained by frame rates, it
minimizes motion blur, resulting in sharper intensity recon-
structions, particularly for fast-moving objects in dynamic
scenes.

Event-based data also benefits from efficient data pro-
cessing. Unlike traditional frame-based methods, event data
only encodes changes in brightness, significantly reducing
data bandwidth and computational overhead. This leads
to faster processing and allows for real-time performance,
which is crucial in applications requiring timely decision-
making.

Despite its advantages, event-based data often suffers
from noise and artifacts due to sensor limitations, com-
plicating the reconstruction of clear intensity images. Tra-

ditional filtering methods often face a trade-off between
noise suppression and detail preservation. This paper inves-
tigates the performance of three distinct noise filtering tech-
niques—Median Filtering, Wiener Filtering, and Anisotropic
Diffusion—to enhance the quality of event-based intensity
images. By using event frame accumulation and system-
atic noise reduction strategies, the objective is to address
the challenges of artifact suppression while maintaining
edge details. Through experimental evaluation using high-
speed dynamic scenes, this project provides a comparative
analysis of the methods, offering practical guidance for
optimizing event-based imaging in real-world scenarios.

2 RELATED WORK

2.1 Frame-Assisted Interpolation
Frame-assisted interpolation is a widely explored approach
for event-based intensity reconstruction, leveraging both
sparse intensity frames and event data to generate a
continuous-time representation of a scene. Unlike purely
event-driven methods, this technique integrates conven-
tional frame-based information to improve reconstruction
accuracy and reduce ambiguity in intensity estimation.

Scheerlinck et al. [1] introduced a continuous-time in-
tensity estimation framework that fuses event streams with
periodic intensity frames. Their approach employs adaptive
interpolation to estimate pixel intensities at arbitrary time
points, effectively bridging the gaps between sparse frames.
This method enhances reconstruction quality by leverag-
ing the complementary strengths of frame-based imaging,
which provides an absolute intensity reference, and event-
based vision, which enables high-speed temporal updates.

However, frame-assisted interpolation faces notable lim-
itations. One major issue is high-speed motion artifacts.
When dealing with rapidly moving objects, the reliance on
sparse frames can introduce motion blur and misalignment
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between event-based and frame-based data. Additionally,
low-light sensitivity poses a challenge, as intensity frames
captured under poor lighting conditions may suffer from
reduced contrast and noise, thereby diminishing the accu-
racy of interpolated reconstructions. Another key limitation
is latency constraints. Since this method depends on frame
acquisition, it does not fully exploit the ultra-low-latency
capabilities of event cameras, making it less suitable for real-
time applications requiring instantaneous updates.

Despite these challenges, frame-assisted interpolation
remains a valuable technique for improving event-based in-
tensity reconstruction, particularly in scenarios where frame
data is available and conditions permit stable interpolation.
Future research aims to address its shortcomings by enhanc-
ing alignment techniques, improving low-light robustness,
and optimizing real-time performance.

2.2 Variational Optimization
Variational optimization is a powerful technique for event-
based intensity reconstruction, as it simultaneously esti-
mates optical flow and intensity information, thereby im-
proving the accuracy of the reconstruction. Unlike frame-
assisted interpolation, which relies on sparse intensity
frames, variational approaches solve an optimization prob-
lem that models both scene dynamics and event-based
changes. Bardow et al. [2] introduced a simultaneous optical
flow and intensity estimation framework, formulating inten-
sity reconstruction as a variational optimization problem.
This approach jointly recovers intensity values and motion
information by minimizing an energy function that incor-
porates event consistency, spatial regularization, and optical
flow constraints. Event consistency ensures that the recon-
structed intensity changes align with the observed event
data, spatial regularization enforces smoothness in intensity
estimates to reduce artifacts, and optical flow constraints
refine intensity reconstruction over time by estimating mo-
tion.

By leveraging optical flow estimation, this method en-
hances intensity reconstruction in dynamic scenes where
motion plays a significant role. However, variational opti-
mization has notable limitations. One of the key drawbacks
is its high computational cost, as solving the optimization
problem is computationally expensive and requires iterative
solvers, which may be impractical for real-time applications.
Additionally, the method is sensitive to noise, assuming
well-structured motion, and can struggle with noisy or
ambiguous event data, leading to instability in the recon-
structed intensity map. Another challenge is parameter tun-
ing, as the effectiveness of variational methods depends on
the careful selection of regularization parameters, making it
difficult to generalize across different scenes. Despite these
challenges, variational optimization remains a promising
approach for high-accuracy intensity reconstruction, partic-
ularly in applications where motion estimation is crucial.
Future research aims to reduce computational complexity,
improve robustness to noise, and integrate deep learning
techniques to enhance real-time performance.

2.3 Contrast-Based Methods
Contrast-based methods provide an effective approach to
event-based intensity reconstruction by leveraging the prin-

ciple of contrast maximization. Unlike interpolation or vari-
ational techniques, these methods focus on optimizing the
reconstructed image to maximize the alignment of event
data with high-contrast edges, which enhances sharpness
and scene details. Stoffregen et al. [3] proposed an event-
based contrast maximization framework that refines inten-
sity reconstruction by formulating it as an optimization
problem. Their approach aims to reconstruct images that
best align with the observed event stream by maximizing
image contrast, ensuring that the reconstructed intensity
map emphasizes the most event-dense regions, thereby
improving edge clarity. It also incorporates temporal con-
sistency, using event timestamps to guide intensity updates
over time, and adaptive refinement, which iteratively ad-
justs the reconstruction to reduce inconsistencies.

This approach offers advantages in preserving fine de-
tails and achieving high temporal resolution. However,
contrast-based methods come with inherent trade-offs. One
key challenge is the balance between noise and detail
preservation—while contrast maximization sharpens de-
tails, it can also amplify sensor noise, making intensity
estimates less stable in low-quality event data. Additionally,
the method’s effectiveness heavily relies on tuning contrast
thresholds and regularization parameters, which may need
to be adjusted for different scenes. Another challenge is the
computational overhead, as iterative optimization increases
processing time, making real-time deployment challenging
without hardware acceleration. Despite these limitations,
contrast-based methods remain a promising approach for
enhancing edge definition in event-based reconstruction.
Future research is focused on improving noise suppression
techniques, adaptive contrast weighting, and achieving real-
time implementation for high-speed applications.

3 METHODOLOGY

3.1 Dynamic Active-Pixel Vision Sensor (DAVIS)
The Dynamic Active-Pixel Vision Sensor (DAVIS) is a hybrid
imaging device that integrates both frame-based and event-
based sensing, making it an effective solution for intensity
reconstruction in high-speed and high-dynamic-range sce-
narios. Unlike conventional cameras, which capture images
at fixed frame rates, DAVIS sensors asynchronously detect
changes in brightness at the pixel level. This event-driven
approach significantly reduces motion blur, lowers latency,
and ensures more efficient data processing, especially in
environments with rapid scene variations.

In the context of intensity reconstruction, the DAVIS
sensor provides a continuous stream of both grayscale in-
tensity frames and event-based data. The grayscale frames
serve as absolute reference images, while the event data
encodes fine-grained temporal information about brightness
changes. By combining these two sources, intensity recon-
struction algorithms can recover high-fidelity images even
under challenging lighting conditions and rapid motion
scenarios. The key advantage of this approach is that it
allows the system to track and reconstruct pixel intensities
in near real-time, offering a more responsive and efficient
alternative to traditional frame-based imaging.

To validate this concept, a computational model of the
DAVIS sensor was implemented in code. This model ex-
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Fig. 1. DAVIS Camera

tracts event-based data by computing the absolute differ-
ence between consecutive grayscale frames and applying a
dynamic threshold to filter out insignificant changes. The
event data is then used to simulate the asynchronous be-
havior of the sensor, ensuring that intensity updates occur in
response to detected brightness variations. This implemen-
tation enables a realistic simulation of DAVIS functionality,
allowing for detailed analysis and evaluation of intensity
reconstruction methods in a controlled environment.

3.2 Intensity Reconstruction Process

3.2.1 Data Acquisition
The intensity reconstruction process begins with data ac-
quisition from video frames, which serve as an approxi-
mation of DAVIS sensor data. The input video provides
two key sources of information: frame-based intensity im-
ages and event-based data extracted from frame differences.
The frame-based images offer absolute grayscale values
but suffer from motion blur and limited temporal reso-
lution. In contrast, event-based data is derived from the
absolute difference between consecutive frames, simulating
the event-driven nature of real DAVIS sensors. This event
data captures fine-grained temporal variations in intensity,
enabling a more dynamic reconstruction process. To en-
hance intensity reconstruction, both sources are integrated:
frame-based images provide a reference intensity structure,
while event-based information refines temporal variations.
This combination ensures a more accurate reconstruction by
compensating for the limitations of frame-only data.

3.2.2 Preprocessing and Noise Reduction
Once data is acquired, preprocessing is performed to en-
hance the quality of the intensity reconstruction. The pri-
mary goal is to mitigate noise while preserving critical scene
details. The first step is the generation of an event image,
computed as the absolute difference between consecutive
grayscale frames. A dynamic thresholding operation is ap-
plied to filter out insignificant intensity changes, ensuring
that only meaningful variations contribute to reconstruction.
To refine event data, multiple noise filtering techniques are
applied. Median filtering is used to remove impulse noise,
particularly salt-and-pepper noise, which can distort inten-
sity reconstruction. Wiener filtering enhances the signal-to-
noise ratio (SNR) by reducing random fluctuations in inten-
sity values, thereby smoothing noise while preserving key

scene structures. Anisotropic diffusion further reduces noise
while maintaining edge integrity, ensuring sharp features
remain visible in the final reconstruction. Each of these
filters is applied separately to evaluate their effectiveness,
and the best-performing technique is chosen based on the
noise characteristics and reconstruction fidelity.

3.2.3 Event-Based Intensity Update Mechanism

The intensity reconstruction follows an iterative update
model that continuously refines pixel intensities using both
frame-based and event-based data. The process begins with
the decay of previous intensities to maintain temporal
consistency. Prior intensity estimates gradually decay over
time, simulating the natural fading of intensity values and
making room for new updates based on incoming event
data. Next, the model accumulates event-based adjustments,
where event data modifies pixel intensities by adding or
subtracting brightness increments. Since event-based data
captures rapid intensity changes, this step enhances the re-
construction’s temporal accuracy. Finally, the updated inten-
sity values are normalized and clipped to a valid grayscale
range (0–255) to prevent visual artifacts and ensure a re-
alistic reconstruction output. By iteratively applying this
update mechanism, the system achieves high temporal pre-
cision, effectively capturing fast-changing brightness varia-
tions.

3.2.4 Quality Evaluation and Output Generation

To assess reconstruction quality, two primary evaluation
techniques are employed. The first is Peak Signal-to-Noise
Ratio (PSNR) calculation, which quantifies reconstruction
accuracy by comparing the reconstructed intensity map
with ground-truth grayscale frames. Higher PSNR values
indicate better reconstruction fidelity. The second method
involves snapshot-based visualization, where periodic snap-
shots of the reconstructed intensity maps are saved and
compared against original frames. Additionally, a PSNR-
over-time plot is generated to visualize reconstruction per-
formance throughout the video. By incorporating both
quantitative (PSNR) and qualitative (snapshot visualization)
evaluation methods, the reconstruction approach is system-
atically validated, ensuring both numerical accuracy and
visual coherence.

4 EXPERIMENTAL RESULTS

4.1 Median Filtering

Median Filtering demonstrated moderate noise suppres-
sion, achieving a PSNR of 27.85 dB for Frame 150. This
technique effectively reduced impulse noise and preserved
edges to a certain degree. However, its visual evaluation
revealed minor artifacts, especially in regions with intricate
details, indicating a slight compromise in maintaining fine
textures. The PSNR-over-time analysis showed fluctuations,
suggesting that the filter’s performance varied depending
on the scene dynamics. Despite its simplicity and com-
putational efficiency, Median Filtering’s effectiveness was
limited in highly complex or noisy environments.
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Fig. 2. Intensity Reconstruction Comparison

4.2 Wiener Filtering

The Wiener Filtering approach produced a PSNR of 27.88
dB for Frame 150, comparable to the unfiltered frame. Its
strength lay in smoothing random noise while maintaining
the general structure of the scene. The visual representation
of the filtered frames displayed minimal perceptible differ-
ences when compared to the unfiltered data. Moreover, the
PSNR-over-time graph highlighted consistent performance
across the test frames, indicating stability and reliability
in diverse conditions. Nevertheless, this technique’s per-
formance was less pronounced in noise-intensive scenarios,
where it struggled to preserve finer image details.

4.3 Anisotropic Diffusion

Among the evaluated methods, Anisotropic Diffusion Fil-
tering achieved the highest PSNR of 27.91 dB for Frame 150.
This approach effectively reduced noise while preserving
edge details, as evident in the qualitative and quantitative
assessments. The reconstructed frames exhibited sharpness
and clarity, highlighting its ability to maintain fine textures.
The PSNR-over-time graph demonstrated an overall im-
provement in reconstruction quality, reflecting its adaptabil-
ity and robustness across dynamic scenes. Anisotropic Dif-
fusion emerged as the most effective technique for balancing
noise suppression and detail preservation, outperforming
the other methods in challenging environments.

5 CONCLUSION

This study evaluated the effectiveness of three noise fil-
tering techniques—Median Filtering, Wiener Filtering, and
Anisotropic Diffusion—for event-based intensity recon-
struction. By leveraging event frame accumulation and sys-
tematic noise reduction strategies, we analyzed their impact
on visual clarity and Peak Signal-to-Noise Ratio (PSNR)
across high-speed dynamic scenes. Our findings indicate
that while all three methods contribute to noise suppression,
Anisotropic Diffusion achieves the best balance between
noise reduction and edge preservation, making it the most
suitable choice for enhancing event-based intensity recon-
struction.

Additionally, this research demonstrated the feasibility
of modeling a Dynamic Active-Pixel Vision Sensor (DAVIS)
in software, enabling controlled evaluation of event-based
sensing algorithms. The computational model effectively
simulated the asynchronous nature of event-driven vision,

providing a framework for testing and optimizing intensity
reconstruction techniques.

Future work will focus on enhancing real-time perfor-
mance through hardware acceleration and adaptive filter-
ing techniques that dynamically adjust to scene conditions.
Integrating deep learning-based denoising models and ex-
ploring hybrid approaches that combine multiple filtering
methods may further improve reconstruction quality. Ulti-
mately, this study provides valuable insights for optimizing
event-based imaging systems, particularly in applications
requiring high-speed, low-latency vision processing.
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