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Solving Inverse Problems in Imaging with
Diffusion Models
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Abstract—Diffusion models are a promising method for solving inverse problems in imaging. Given a noisy measurement, diffusion
models can incrementally denoise the image by removing some of the noise at each step of the process. In this project, the notation
and diffusion model processes used by various approaches are unified. Then, a variety of diffusion model approaches are applied to
the inverse problem, with varying levels of conditioning on the noisy measurement. These approaches are demonstrated on a diffusion
model trained on human faces. The ability to generate an image of a human face without conditioning on the noisy measurement is first
shown as a baseline. Then, SDEdit, a method which uses a heuristic to guide the image towards the original noisy image, is examined.
Last, three methods (ILVR, ScoreALD, and DPS) which explicitly estimate the gradient of the log likelihood are investigated and
compared. Ultimately, this project shows that diffusion models are an effective method for solving inverse problems in imaging.

Index Terms—Computational Imaging, Inverse Problems, Diffusion Models
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1 INTRODUCTION

NOISE in images is a longstanding problem, with im-
perfections or limitations of cameras adding noise to

images. For example, a moving camera or moving object
may create motion blur, an improperly focused camera may
create a blurry image, or an obstruction may block a part of
an image. Solving the inverse problem, or reconstructing a
denoised image from the noisy image, is a difficult problem
because there are an infinite number of possible solutions
based on the captured image.

Although many approaches have been proposed to solve
inverse problems in imaging, the recent advent of diffusion
models show significant promise. Diffusion models are a
generative machine learning method and learn to iteratively
denoise an image, transforming noise to a clearer represen-
tation of an image at each step of the process. To train a
diffusion model, noise is gradually added to images and a
deep neural network learns to reverse this process. Diffusion
models are most popular for their applications in image
and video generation [1], where diffusion models transform
noise into a realistic image. As investigated in this project,
diffusion models can be extended to solve inverse problems
by conditioning the process on a noisy measured image.

Exactly conditioning the denoising process on the mea-
sured image is intractable. However, both heuristics and ap-
proximations have been proposed for the conditioning step.
This project compares different heuristics/approximations
and evaluates their effectiveness for solving inverse prob-
lems, specifically the inpainting and deconvolution prob-
lems. Since diffusion models are relatively new for solv-
ing inverse problems, this project does not compare the
diffusion models to existing approaches, but rather com-
pares different diffusion model appraoches. In particular,
the SDEdit [2], ILVR [3], ScoreALD [4], and DPS [5] methods
are compared.

In this project, unconditioned and conditioned diffusion

• This is the final project for the Winter 2025 iteration of EE367 at Stanford

models are explained and notation used by different meth-
ods are unified. The forward noising process and uncondi-
tional image generation is shown as a baseline. A heuristic
approach (SDEedit) which guides the image generation
towards the original image without explicit conditioning is
investigated. Last, three methods (ILVR, ScoreALD, DPS)
that solve the inverse problem by conditioning on a noisy
captured image are compared. The remainder of this paper
includes Related Work in Section 2, Methods in Section 3,
Evaluation Metrics in Section 4, Results in Section 5, and a
Discussion and Conclusion in Section 6.

2 RELATED WORK

The inverse problem for imaging is not new, with many ap-
proaches proposed over the years. Popular methods include
optimization-based approaches, such as the Half Quadratic
Splitting (HQS) method and the Alternating Direction Meth-
ods of Multipliers (ADMM) [6]. More recently, with the
explosion of computing power and data, neural networks
trained under supervised learning have been proposed for
solving the inverse problem [7]. However, the HQS/ADMM
approaches can be slow to converge (if at all) and the deep
learning approach performs poorly for out-of-distribution
samples.

Generative adversarial networks (GANs) are a related
method that are also generative. GANs simultaneously
trains a generator to generate an image and a discriminator
to detect generated images. GANs have been proposed for
solving inverse problems for imaging [8]. However, GANs
are notoriously unstable and difficult to train, limiting their
practical use.

More recently, diffusion models have been proposed for
image generation. The first description of using diffusion
models for images was by [9], where the basic framework
for diffusion models was proposed. Besides the approaches
for inverse problems examined in this project, a non-
exhaustive list of other techniques include Score-SDE [10],
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ΠGDM [11], BlindDPS [12], and Moment Matching [13]. All
of these methods condition the diffusion model by explicitly
making some approximation to match the measurement.

3 METHODS

In this section, the basic formulation of diffusion models
for solving inverse problems is presented. Since notation
can vary widely, the approaches are unified with a common
notation. Then, the methods examined in this project for
solving inverse problems are described.

3.1 Diffusion Models

The diffusion model can be separated into a forward noise
process and a reverse denoising process. In the forward
noise process, noise is gradually added to an image using a
forward noise model. In this case, x0 is the original unnoisy
image and xt is the image after t steps of added noise.
This project uses the variance-preserving (VP) formulation
of diffusion models. In the VP formulation provided by [9],
the forward noise model is described by

xt =
√
1− βtxt−1 +

√
βtzt−1, (1)

where βt is the noise schedule and zt−1 ∼ N (0, I). This
forward noise model is computationally efficient for any t if
rewritten into an equivalent formulation depending only on
the original image and a single noise term:

xt =
√
ᾱtx0 +

√
1− ᾱtz, (2)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, and z ∼ N (0, I). The
derivation for this formulation is provided in the Appendix.

In the reverse denoising process, a diffusion model itera-
tively reverses the noising process of (2). Tweedie’s formula
provides the estimate for the completely denoised image at
time t:

x̂0 =
1√
ᾱt

(xt + (1− ᾱt)∇xt
log pt(xt)) (3)

The learnable function of a diffusion model is the score
function, sθ(xt, t), which is trained to match ∇xt

log pt(xt).
Details on training the score function are beyond the scope
of this project. Using this score function, the approximation
for the denoised image is

x̂0 =
1√
ᾱt

(xt + (1− ᾱt)sθ(xt, t)) (4)

and the incremental denoising step can be written as

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x̂0 + σz (5)

where the Gaussian noise z adds robustness and guarantees
unique denoising steps when the algorithm is run repeat-
edly. An alternative but equivalent denoising step can be
derived by substituting x̂0 from (4) into (5) (derived in the
Appendix), such that a single step of the reverse diffusion
process can be written:

xt−1 =
1

√
αt

(xt + (1− αt)sθ(xt, t)) + σz. (6)

Algorithm 1 Reverse Diffusion
1: xT ∼ N (0, I)
2: for t = T to 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: x̂0 = 1√

ᾱt
(xt + (1− ᾱt)sθ(xt, t))

5: x′
t−1 =

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1(1−αt)

1−ᾱt
x̂0 + σz

6: xt−1 = x′
t−1 + ζtg(xt,y)

7: end for
8: return x0

Although the two formulations are equivalent, the denois-
ing step using (4) and (5) is used in the remainder of this
project.

The reverse diffusion process described has been formu-
lated using the score function, sθ(xt, t); however, a noise-
prediction network, ϵϕ(xt, t), can be learned instead. In this
case, a single reverse denoising step is

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, (7)

where the equivalence of the formulation in (6) and (7)
is derived in the Appendix. Since these approaches are
equivalent, the score function formulation is used for the
remainder of this project.

3.2 Conditioned Diffusion Models

Thus far, the unconditional denoising process has been de-
scribed. However, to solve an inverse problem, the diffusion
process should be conditioned on the original noisy mea-
surement, y. The image formation model is y = A(x) + n,
where A(·) is the noisy measurement operator and n is
zero mean Gaussian noise. Although A(·) can be both non-
linear and linear, only linear operators are considered in this
project since only some of the methods are applicable for
non-linear operators.

To condition the diffusion process on the measurement,
∇xt

log pt(xt) in (3) is replaced with ∇xt
log pt(xt|y). Using

Baye’s rule,

∇xt
log pt(xt|y) = ∇xt

log pt(xt)︸ ︷︷ ︸
sθ(xt,t)

+∇xt
log pt(y|xt) (8)

The gradient of the log likelihood,∇xt log pt(y|xt), is in-
tractable, requiring an approximation. The approaches ex-
plored in this project use various approximations for
∇xt log pt(y|xt). To create a common notation for the dif-
ferent approaches, let

ζtg(xt,y) ≈ ∇xt log pt(y|xt), (9)

where g(xt,y) is the approximation for the gradient of the
log likelihood and ζt is an approximation dependent scaling
term. Then, the denoising process described in (4) and (5)
can be updated to include the measurement conditioning.
The complete denoising process is summarized in Algo-
rithm 1 and the remaining subsections details the different
heuristics or approximations used by different approaches
for g(xt,y) and ζt.
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TABLE 1
The posterior approximation and scale for the various methods.

Method g(xt,y) ζt
SDEdit 0 0
ILVR ϕN (yt−1)− ϕN (x′

t−1) 1
ScoreALD −∇xt∥y −A(xt)∥22

1
σ2+γ2

t

DPS −∇xt∥y −A(x̂0)∥22
ζ

∥y−A(x̂0)∥2

3.3 Conditioned Diffusion Model Methods
In this subsection, the different approaches for solving the
conditioned diffusion problem for inverse problems are
described. The choices for g(xt,y) and ζt are summarized
in Table 1 for all the methods described in this subsection.

3.3.1 SDEdit
The first method is SDEdit [2], which does not attempt to
approximate ∇xt

log pt(y|xt), but instead uses a heuristic
to guide the reverse diffusion process towards the measured
image. SDEdit starts at an intermediate denoising step and
instead of initializing xT with random noise, SDEdit com-
bines the noise with the measured image by using (2). Thus,
line 1 in Algorithm 1 is replaced with

xT =
√
ᾱTy +

√
1− ᾱTz, (10)

where z ∼ N (0, I). The remaining steps remain the same,
with g(xt,y) ≡ 0 and ζt = 0 ∀ t. The starting step T
is a hyperparameter which should be tuned. A larger T
results in more initial noise leading to larger realism, while
a smaller T has less noise and is more faithful to the original
measurement.

3.3.2 ILVR
ILVR [3] is the first method investigated in this project that
explicitly conditions the denoising on the measurement.
ILVR uses a low-pass filtering operation, ϕN (·), which is
a sequence of downsampling and upsampling by a factor
of N . The goal of ILVR is to match the downsampled
version of the generated image to the downsampled version
of the measured image: ϕN (x0) = ϕN (y). This matching
is enforced at each step of the reverse diffusion process:
ϕN (xt) = ϕN (yt), where yt uses the forward noise process
described in (2). Thus, the approximation becomes

g(xt,y) = ϕN (yt−1)− ϕN (x′
t−1), (11)

with ζt = 1. This process can be viewed as removing
the low-frequency component of the current approximation
and adding the low-frequency component of the associated
measurement. This correction term is only applied for t > b,
where b is the stopping time for the correction. The stopping
time, b, and the downsampling rate, N , are both hyperpa-
rameters of this method.

3.3.3 ScoreALD
In ScoreALD [4], the gradient of the log likelihood is esti-
mated by using the current xt:

ζtg(xt,y) ≈ ∇xt
log pt(y|xt) ≈ − 1

σ2 + γ2
t

∇xt
∥y−A(xt)∥22

(12)

where the estimate can be computed with backpropagation.
The approximation in (12) is only correct for t = 0, and
the authors propose an annealing term, γt, that reduces the
scale ζt for large t when the approximation is poor. The set
of annealing terms {γt} is a hyperparameter that must be
chosen for each problem.

3.3.4 DPS

The DPS method [5] estimates the gradient of the log likeli-
hood term similarly to ScoreALD. However, instead of using
xt, DPS uses the estimate of the denoised imaged, x̂0:

ζtg(xt,y) ≈ ∇xt
log pt(y|xt) ≈ −ζt∇xt

∥y −A(x̂0)∥22,
(13)

where x̂0 is computed as in line 4 of Algorithm 1 and
the gradient is computed with backpropagation. The ζt
term is a hyperparameter, and the authors suggest using
ζt = ζ

∥y−A(x̂0)∥ , with ζ ∈ [0.1, 1.0]. Furthermore, the au-
thors quantify an upper bound error on the approximation,
although the details are beyond the scope of this project.

4 EVALUATION AND COMPARISON OF THE METH-
ODS

To evaluate the different solution methods for solving in-
verse problems with diffusion models, two metrics are used:
peak signal-to-noise-ratio (PSNR) and Learned Perceptual
Image Patch Similarity (LPIPS) distance. PSNR is a com-
monly used metric to compare different image signals and
is defined as

PSNR = 10 log10

(
MAX2

MSE

)
, (14)

where MAX is the maximum possible value of a pixel and
MSE is the mean squared error between the image and the
ground truth. Although PSNR is a commonly used metric
and can evaluate the similarity between two images, the
metric is criticized for not representing visual quality well,
since a reconstruction with a large PSNR may not look good
to a human observer.

LPIPS, however, is a better metric for analyzing the
visual quality. LPIPS compares the distance between acti-
vation layers from a neural network for the reconstructed
image and the ground truth [14]. The key idea for LPIPS is
that the activation layers of a neural network aligns more
closely to the features that the human eye observes. Thus,
a lower LPIPS value indicates a better reconstruction of a
noisy image.

Two different forward noise models are considered for
evaluating the methods: inpainting and deconvolution. For
inpainting, a 50× 50 pixel box is masked out of the original
image. In deconvolution, a Gaussian blur kernel of size
61 and standard deviation 3 is applied to the image. The
PSNR and LPIPS values are computed for each method and
the reconstructed images are qualitatively compared. The
different methods are all evaluated on the same image for
consistency. The ground truth and noisy measurements of
the image to be tested is shown in Fig. 1.
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Fig. 1. The ground truth, inpainting, and denconvolution images.

5 RESULTS

In this section, the proposed methods are evaluated. First,
unconditional generation with a diffusion model is demon-
strated along with estimates of a denoised image. Then, the
results from the proposed methods, SDEdit, ILVR, Score-
ALD, and DPS, are shown and compared.

5.1 Diffusion Model

A pretrained diffusion model from [5] is used. The dif-
fusion model is trained on the Flickr-Faces-HQ (FFHQ)
dataset [15], a dataset with a wide variation of human faces.
This diffusion model is trained to learn the score function,
sθ(xt, t) = ∇xt

log pt(xt), rather than the noise function.
Implementation of the diffusion model and inverse problem
methods are implemented with PyTorch.

First, the diffusion model’s ability to unconditionally
generate an image from noise is demonstrated. Specifically,
no posterior sampling is used and g(xt,y) = 0 in line 6
of Algorithm 1. Starting from x1000 ∼ N (0, I) and un-
conditionally denoising for 1000 steps, Fig. 2 shows several
examples of denoised images. As seen in Fig. 2, each time
the algorithm is executed a different image is generated
due to the random starting noise. Fig. 2 demonstrates the
importance of conditioning the denoising process on the
measurement to solve the inverse problem instead of gener-
ating a random image.

Next, the estimate of the denoised image at a given time
step is investigated. First, noise is added to the image at time
step t using (2). Then, the estimate for the denoised image is
computed using (4). An example of this estimate is shown
for a human face and a red panda face in Fig. 3, with the
resulting PSNR and LPIPS shown in Table 2. Predictably,
the PSNR and LPIPS show better results when predicting
for a smaller t, since there is less noise in the image. As t
becomes larger, the predicted denoised image is farther from
the ground truth. As expected, the results for the red panda
are worse than for the human face, which can be attributed
to the diffusion model being trained on human faces rather
than animal faces.

5.2 Results of Investigated Methods

This subsection shows the results from using SDEdit, ILVR,
ScoreALD, and DPS on the inverse problem shown in Fig. 1.
The quantitative results (PSNR and LPIPS) are summarized
for each method in Table 3.

Fig. 2. Images created through unconditional denoising using T = 1000.

TABLE 2
Evaluation metrics for the estimated denoised image at various noising

steps.

Human Red Panda
t PSNR LPIPS PSNR LPIPS

30 37.4 0.0360 34.4 0.0473
100 32.6 0.0886 29.2 0.219
300 27.2 0.204 25.1 0.574
500 23.5 0.327 21.4 0.603

5.2.1 SDEdit
SDEdit is implemented with start times T = {250, 500, 750}
to demonstrate the tradeoff between realism and faithful-
ness. The results shown in Fig. 4 show that with a smaller
starting time, the denoised image is more faithful to the
original measurement but less real. For T = 250, this results
in a poor denoising with the deconvolution result still show-
ing blur and the inpainting result still showing a blocked
out region. As the starting time becomes larger, the image
become more real but less faithful to the measurement. The
images for T = 750 show the most human looking faces, but
do not resemble the girl from the measurement. Choosing
an intermediate starting time, T = 500, results in a compro-
mise between realism and faithfulness. These images don’t
show any residual deconvolution or inpainting, but only
somewhat resemble the original girl.

The quantitative results summarized in Table 3 reflect
the tradeoff between realism and faithfulness. The PSNR
and LPIPS show the best values for a small T , showing that
these are the most faithful to the ground truth. What these
quantitative measures fail to capture are the realness that
are lacking in the results for T = 250.

5.2.2 ILVR
ILVR is implemented for downsampling/upsampling rates
of N = {4, 8, 16}. The denoising process starts from T =
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Fig. 3. Estimates of the denoised images at various levels of noise.

TABLE 3
A summary of the PSNR and LPIPS for all the investigated methods.

SDEdit ILVR ScoreALD DPS
T PSNR LPIPS N PSNR LPIPS Anneal Sch. PSNR LPIPS ζ PSNR LPIPS

250 23.5 0.139 4 20.8 0.197 [10,15] 24.3 0.110 0.1 29.7 0.073
Inpainting 500 20.4 0.186 8 20.2 0.189 [17, 22] 26.3 0.079 0.3 34.6 0.028

750 14.6 0.410 16 19.6 0.240 1 36.3 0.010
250 23.8 0.183 4 23.3 0.180 [10,15] 23.8 0.138 0.1 25.1 0.091

Deconvolution 500 20.2 0.233 8 23.3 0.144 [15,20] 21.7 0.158 0.3 27.0 0.078
750 14.2 0.400 16 20.7 0.192 1 28.3 0.054

Fig. 4. The results from SDEdit using different starting times.

1000, and the conditioning is applied for t ∈ [300, 1000]
for deconvolution and t ∈ [500, 1000] for inpainting. The
results are shown in Fig. 5 and the quantitative results

Fig. 5. The results from ILVR. The ILVR adjustment was stopped at t =
300 for deconvolution and t = 500 for inpainting.

are summarized in Table 3. Like SDEdit, faithfulness de-
creases as N increases. A larger downsampling factor leads
to a correction that is less like the original measurement.
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Fig. 6. The results from ScoreALD using different annealing schedules,
γt.

However, with too small of a downsampling (N = 4), the
noise of the original measurement is not filtered enough and
artifacts of noise remain in the denoised image: blurriness
for the deconvolution problem and an inpainting artifact
for the inpainting problem. The PSNR and LPIPS values
show that the intermediate N = 8 downsampling rate
images have the best quantitative results, where this level
of downsampling guides the denoising process towards the
measurement while removing the deconvolution or inpaint-
ing. ILVR results in PSNR and LPIPS that are comparable
with SDEdit and do not show significant improvement.

5.2.3 ScoreALD
ScoreALD is implemented and tested for different annealing
schedules with T = 1000. The final denoised result are
highly sensitive to the annealing schedule and this hyper-
parameter must be tuned to yield acceptable results. The
annealing schedule is a linear schedule γt ∈ [a, b], where
γT = b and γ0 = a. The results for deconvolution and
inpainting under various annealing schedules are shown in
Fig. 6 and the quantitative results are in Table 3. ScoreALD
results in images that most closely resemble the ground
truth of all methods thus far. The PSNR and LPIPS show
significant improvements compared to SDEdit and ILVR.
However, the importance of choosing a proper annealing
schedule must be emphasized, since a poor annealing sched-
ule may result in poor results such as the inpainting solution
for γt ∈ [10, 15]. Because the approximation error of the
gradient of log likelihood may be large, a large enough γt
is required to reduce the contributions of g(xt,y) when the
approximation error is large.

5.2.4 DPS
DPS is implemented and evaluated using T = 1000 and dif-
ferent scales, ζ . As shown in Fig. 7, the resulting images are
very close to the original ground truth. Additionally, the de-
noised images are not very sensitive to the hyperparameter,
ζ . The quantitative results in Table 3 support the qualitative
results, with the PSNR and LPIPS outperforming all other
methods no matter the choice of ζ . The choice of scale, ζ ,
does affect the results, but even a poor choice of ζ produces

Fig. 7. The results from DPS using different scale values, ζ.

a good reconstruction. The approximation of g(xt,y) clearly
does a good job in guiding the diffusion process towards
the ground truth, diminishing the dependence on choosing
a good ζ .

6 DISCUSSION AND CONCLUSION

In this project, several methods are shown for solving in-
verse problems with a diffusion model conditioned on a
noisy measurement image. The methods are evaluated on
a noisy human face. First, the SDEdit and ILVR methods
are shown. SDEdit does not approximate the gradient of the
log likelihood, and suffers from a tradeoff between realism
and faithfulness. ILVR attempts to match the low-frequency
components of the reconstructed image and the measured
image. ILVR shows varying results based on the choice of
downsampling rate.

DPS produces the best results on the test image. The
DPS approximation for the gradient of the log likelihood
has proven error bounds, which may contribute to its su-
perior performance. DPS is also notable due to its low
sensitivity to hyperparameter choice, ζ . The second best
method is ScoreALD, with an approximation similar to DPS
that is less accurate. ScoreALD requires a good choice of
annealing schedule to produce consistent results. While DPS
and ScoreALD outperform the other methods, these two
methods are also more computationally expensive. DPS and
ScoreALD require backpropagation for computing g(xt,y),
which results in a slower denoising process. Note, however,
that the original ScoreALD paper [4] shows a closed form
solution g(xt,y) ≈ AH(y −Axt) that may be faster.

Ultimately, this project has shown various approaches
to solving the inverse problem for imaging using diffu-
sion models. As shown, generative diffusion models can
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reconstruct high quality images from a noisy ground truth,
providing a new method for solving inverse problems.
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APPENDIX

In this appendix, several derivations relevant for imple-
menting the diffusion model are shown.

First, the equivalency of (1) and (2) is demonstrated.
Recall, the forward noise model of a variance-preserving
diffusion model is:

xt =
√
1− βtxt−1 +

√
βtzt−1 =

√
αtxt−1 +

√
βtzt−1,

where αt = 1 − βt and zi ∼ N (0, I). This formulation can
be rewritten as a conditional distribution that depends on
only t = 0:

xt =
√
αtxt−1 +

√
βtzt−1

=
√
αt(

√
αt−1xt−2 +

√
βt−1zt−2) +

√
βtzt−1

=
√
αtαt−1xt−2 +

√
αtβt−1zt−2 +

√
βtzt−1

...

=
√
ᾱtx0 +

√
βtzt−1 +

√
αtβt−1zt−2 + · · ·+

√√√√ t∏
i=2

αiβ1z0︸ ︷︷ ︸
(⋆)

where ᾱt =
∏t

i=1 αi. Recall, zi ∼ N (0, I), and using the
properties of normal distributions results in

(⋆) ∼ N (0, (βt + αtβt−1 + αtαt−1βt−2 + · · ·+
t∏

i=2

αiβ1)︸ ︷︷ ︸
(⋄)

I)

Simplifying the covariance term:

(⋄) = βt + αtβt−1 + αtαt−1βt−2 + · · ·+
t∏

i=2

αiβ1

= 1− αt + αtβt−1 + αtαt−1βt−2 + · · ·+
t∏

i=2

αiβ1

= 1− αt

(
1− βt−1 − αt−1βt−2 − · · · −

t−1∏
i=2

αiβ1

)

= 1− αtαt−1

(
1− βt−2 − · · · −

t−2∏
i=2

αiβ1

)
...
= 1− αtαt−1 · · ·α2(1− β1)

= 1− ᾱt

Thus, (⋆) ∼ N (0, (1 − ᾱt)I) =
√
1− ᾱtN (0, I) and the

forward diffusion step can be written as

xt =
√
ᾱtx0 +

√
1− ᾱtz,

where z ∼ N (0, I).

■

Next, the equivalency of the reverse diffusion process
of (4)/(5) and (6) is shown. First, note that

√
ᾱt−1/ᾱt =√

ᾱt−1/(αtᾱt−1) = 1/
√
αt. Substituting x̂0 from (4) into



8

the expression for xt−1 in (5):

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt

+

√
ᾱt−1(1− αt)√
ᾱt(1− ᾱt)

(xt + (1− ᾱt)sθ(xt, t))

=

(√
αt(1− ᾱt−1)

1− ᾱt
+

√
ᾱt−1(1− αt)√
ᾱt(1− ᾱt)

)
xt

+

√
ᾱt−1(1− αt)√

ᾱt
sθ(xt, t)

=
1

(1− ᾱt)

(√
αt(1− ᾱt/αt) +

(1− αt)√
αt

)
xt

+
(1− αt)√

αt
sθ(xt, t)

=
1

(1− ᾱt)
(
√
αt − ᾱt/

√
αt + 1/

√
αt −

√
αt)xt

+
(1− αt)√

αt
sθ(xt, t)

=
1

√
αt

(xt + (1− αt)sθ(xt, t)) ,

which is the formulation of (6).
■

Last, the equivalency of the reverse diffusion process
using the score function and noise-prediction network is
shown. Notice that if sϕ(xt, t) = − ϵθ(xt,t)√

1−ᾱt
is derived, the

equivalency of (6) and (7) is also derived. To do this, start
from the forward diffusion process of (2):

xt =
√
ᾱtx0 +

√
1− ᾱtϵϕ(xt, t)

Substituting Tweedie’s formula,

x0 =
1√
ᾱt

(xt + (1− ᾱt)∇xt log pt(xt))

=
1√
ᾱt

(xt + (1− ᾱt)sθ(xt, t)),

into the forward diffusion process:

xt =
√
ᾱt

1√
ᾱt

(xt + (1− ᾱt)sθ(xt, t) +
√
1− ᾱtϵϕ(xt, t)

⇒(1− ᾱt)sθ(xt, t) =
√
1− ᾱtϵϕ(xt, t)

⇒sθ(xt, t) =
1√

1− ᾱt
ϵϕ(xt, t)

which shows the formulations are the same.
■


