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Enhancing and Revealing Hidden Image

Details
Madeline Hays

O | Abstract

This report explores conventional image enhancement techniques for improving degraded images
encountered in real-world scenarios, such as surveillance footage. We focus on four primary sources of
image degradation: fixed-additive noise, motion blur, poor exposure, and low resolution. Our study
evaluates various denoising strategies, including filtering, deconvolution, exposure correction, and super-
resolution, using both quantitative (PSNR, SSIM) and qualitative assessments. A subset of images from the
BSDS300 dataset was systematically degraded and processed using different enhancement techniques to
analyze their effectiveness. Results indicate that the most effective enhancements are highly dependent on
the specific noise type, with Gaussian noise filtering and exposure correction providing the most significant
improvements. Additionally, we demonstrate that the order of enhancement steps affects final image
quality. While conventional methods offer improvements, their reliance on manual parameter tuning
presents limitations, suggesting that adaptive optimization and deep learning-based approaches hold
promise for future advancements in image restoration and enhancement.

Our goal is to examine the interplay

1| Introduction

between different types of image degradation and
The quality of photographic records directly

affects their interpretability. While phone
cameras have made significant advancements in

conventional enhancement techniques. We
investigate how the strategies influence other

forms of non-targeted noise as many low-quality

resolution and HDR contrast, public and . . . .
images face multiple noise sources. Our aimis to

commercial security cameras often remain low- . . . . - .
v improve image quality while avoiding hallucinated

quality CCTV systems. These cameras are artifacts
affected by various forms of image degradation, '

including weather, lighting conditions, electronic

2 | Related work

We address four primary sources of image
degradation: fixed-additive noise, motion blur,

noise, and motion blur [1,2]. Despite these
limitations, such footage is critical for law
enforcement investigations, where clear images

evidence  than
all poor exposure, and low resolution. Each can be

can provide stronger
circumstantial reports [3]. Replacing

surveillance  cameras  with high-quality
alternatives is cost-prohibitive, making image

enhancement an essential tool.

mitigated using established image-processing
techniques.
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Figure 1. Project Methodology Pipeline

Fixed-additive noise can be modeled as
gaussian white noise, commonly originating
pixel-to-pixel variations and readout circuitry.
Conventional denoising techniques include
filters. Gaussian filters provide local, linear
smoothing while median filters provide local,
non-linear smoothing. Edge preserving filters
include anisotropic filters, utilizing a form of
orthogonal convolution, and bilateral filters,
weighting pixels in local neighborhoods with
similar intensities more strongly [4,5]. Block-
matching 3D filtering (BM3D) considers patterns
within images by grouping blocks of the image by
structural similarities. Groups are subjected to
followed by

discrete cosine transforms

thresholding [6].

Motion blur occurs when object move
during image capture. Wiener deconvolution
attempts to inverse this blur along with an SNR
damping factor to allow for the presence of
gaussian noise. An alternative method, the
Richardson-Lucy (RL) deconvolution assumes a
Poisson noise model low-light
conditions and works iteratively to remove blur
[7,8]. However, both these methods assume
knowledge of the blur Blind
deconvolution techniques iteratively use a

common in

prior kernel.
normalized sparsity regularizer to optimize a blur
kernel estimate [9].

Poor exposure encompasses low-light
and overexposed conditions. Tone mapping
works to enhance contrast and color by scaling

f= ===

luminance while maintaining high-contrast
details. For example, tone mapping with a
bilateral filter applies the filter to the intensity
information of the image and preserves detail by
subtracting the output of the filter from the input
when reconciling the image. Tone mapping with a
local Laplacian filter uses the logarithmic space
to compress the dynamic range of the image

while preserving the local contrast[11-13].

Low resolution arises due to limited
pixel density in wide-field surveillance cameras.
methods  include

Enhancement unsharp

masking, which amplifies high-frequency
components, and bicubic interpolation, which

smooths pixelation artifacts [14,15].

e =
g

. o f
Figure 2. (a) Clean Image (b) Gaussian Noise (c) Motion Blur (d)
Overexposure (e) Underexposure (f) Low Resolution

3 | Method

Our methodology comprises of four key steps
(Figure 1).

3.1 | Modeling Noise

To explore these inter-relationships of noise
sources and denoising strategies, we first must
model the various noise sources ( Figure 2).



Gaussian noise was modeled as a white noise
added to each pixel (Eq. 1). Levels assessed were
o =[0.1,0.3,0.6].

Inoisy(xIY) =1I1(x,y) + N(x,y)
N(x,y)~N(0, o) Fq 1

I(x, y) is the original image at pixel (x,y). N(x,y) is
the Gaussian noise distributed with mean 0 and
standard deviation g at pixel (x,y).

Motion blur was modeled as a 2D convolutional
operation with a normalized horizontal blur matrix
(Eg. 2). Levels assessed were N =[5, 10, 20].

Iyiurrea(x,y) = (I x K)(x,y)

0 - 0
K(u,v) =%[1 .. 1|, N =size(K) FEq.2
0 -« 0

K is the blur kernel representing the point spread
function.

Poor exposure was modeled as a scaling of pixel
intensities where a scale below 1 increased
shadows and scale above 1 increased brightness
(Eg. 3). The levels for underexposure and
overexposure were f =[0.7,0.5,0.3]and f =[1.3,
1.6, 2.2], respectively.

Lexp(x,y) = f - 1(x,y)
Underexposure: 0 < f <1
Overexposure: f > 1 Eq 3
The variable f is the scaling factor.

Low resolution was modeled by applying an anti-
aliasing low-pass gaussian filter followed by
down-sampling of the image (Eq. 4). The factors
of down-sampling were s =[2, 4, 8].

k k
Ilowpass(x'Y) = Z I(x —u,y—v)G(u,v,0)

u=—kv=-k
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Lgown (X", y") = IlowpaSS (sx',sy")

1 _u+4p?
G(u,v,0) = se 20%
2no
S .
o=, 8= scale, k = radius Eq. 4

Where G(u, v, 0) is the gaussian filter and (x’,y")
are the new pixel coordinates.

3.2 | Denoising Strategies

To denoise the images, we investigated strategies
of four main categories: filters, deconvolution,
exposure correction, and sharpening. All
strategies were varying tunable parameters for all
noise types at the reported levels.

Filters. Gaussian filters (Eq. 4 - Lowpass) were
applied with varying ¢ from 0.1to 1.2in 12 linear
steps. Median filters (Eq. 5) were applied with
varying kernel sizes, r, of 2 to 11 in linear spaces
of 1. Bilateral filters [4,5] were applied with a
radius of 3, intensity o of 0.25, and varying spatial
o of 0.3 to 2.4 in 12 linearly spaced steps.
Anisotropic filters [5] were applied gradient
threshold of 10, step size of 0.15, and varying
number of iterations from 5 to 50 in 10 linear
steps. Total variation minimization [5] was
applied with varying weight of 0.05 to 0.95 in 10
linear steps. Finally, BM3D [6] was applied with
varying o from 0.1 to 0.9 in 9 linear spaced steps.

L (0, y) =
median({I(x + i,y +)) | —r<ij<r}) Eq. 5

Where the median function selects the median
value from neighboring pixels of window size (2r+1)
X (2r+1).

Deconvolution. Wiener deconvolution (Eg. 6)
and RL deconvolution [7,8]. Kernel sizes were



varied from 2 to 20 in 10 linear steps for both
methods.

Tp(w)-H*(u,v)
[H,v)|2+8Sp(w,v)/Sf(u,v)

I(w,v) = Eq. 6
Where [ (u, v) is the FFT of the deconvolved image,
I, (u, v) is the FFT of the noised image, H(u, v) is
the optical transform function, and S(u, v) is the
power spectral density of the noise and the image,
respectively.
Exposure Correction. Adaptive histogram
equalization the
neighborhood size from 2 to 20 in 10 linear steps

[10]. Bilateral tone mapping [11] was applied with

was applied varying

a spatial o of 15 and o range varying from 0.1 to 1
in 10 linear steps. Finally, Laplacian tone
mapping [12] was applied. In this function alpha
controls contrast and beta controls edge
preservation. One set applied set alphato 1.5 and
varied beta from 0.1 to 0.9 in 9 linear steps, and
the other set applied set beta to 0.5 and varied

alphafrom 0.3to 3in 10 linear steps.

Low Resolution. A simple implantation of bicubic
interpolation [14] was applied varying the scale
factor from 2 to 12 in 10 linear steps. Unsharp
masking [15] was applied with a o of 1.5 and
varying sharpening strength from 0.5 t0 2.5in 10
linear steps.

3.3 | Evaluation Metrics

For comparison, we have 50 images that were
noised with one of 5 noise types at 3 levels of
noise per type. To assess denoising strategy
performance, we compared peak signal noise
ratio (PSNR) and structural similarity index
measure (SSIM) between the noised image and
the clean image averaged across the dataset to
Denoising  strategy
performance was evaluated by applying each

establish a baseline.

Overexposure

e T e
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strategy at the specified parameters to each
noised image and calculating the average PSNR
and SSIM between the denoised image and the
clean image to determine quantitative
performance. Then, using the best attempted
tuned parameter for either SSIM or PSNR, an
example image was displayed for each noise type

and level to check perceptual performance.

3.4 | Multi-Noise Processing

Several strategies were attempted to classify a
noised image by the noise type. These include
peak intensity value, average intensity value,
standard deviation of intensities, image skew,
and image contrast by percentile difference, blur
as average log magnitude of the image FFT, and
blur as the Laplacian variance of the image.

Sample images were subjected to
multiple noise sources. Denoising strategies
were performed in sequence and compared to
determine potential impacts on effective image
enhancement.

Results

Example results for noised images at the varying
denoised image PSNR and SSIM
and denoised

levels,

comparison, images using
optimum filter are displayed in the Appendix. For

full results, see final code
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Figure 3 Gaussian Filter performance on 50 overexposed images

Filters. Filters provided the most effective
smoothing for Gaussian noise, with BM3D
outperforming other methods. However, most
filters negatively impact non-Gaussian noise



Motion Blur

Motion Blur
N

types with few exceptions. For example,
Gaussian filters have the potential to improve
SSIMin certain overexposed images but results in
a drop in PSNR (Figure 3). Bilateral filtering, while
computationally demanding, improves gaussian
noise and has the potential to improve motion
blur and overexposure given its edge-preserving
methods and spatial smoothing, respectively.

Deconvolution.

RL PSF=10 | PSNR=11.30 | SSIM=0.06

— —_——
? horm
’ : Ny

Deconvolution did
not serve well to
the various noise

types.
deconvolution had

Wiener

the potential to
improve images of
gaussian noise but
struggled with
unknown blur
kernels. RL
deconvolution can

Figure 4 RL Deconvolution on
Gaussian Noise (0.3) Image

perceptually strengthen edges (Figure 4) but also
struggled to improve PSNR and SSIM in noise
types including gaussian noise.

Exposure Correction. Adaptive histogram
equalization works well on underexposed images
of significant degree in both PSNR and SSIM.
However, only PSNR improves for mildly

Effect of Exposure Correction on Different Noise Types

Kemnel Size 10 Kemel Size 20
2 2 SSIM
¢ S5 30 0 .
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significantly overexposed images. For the other
noise types, histogram equalization worsens
image quality, but larger tile size has a reduced
effect. For the bilateral tone mapping,
improvement in both PSNR and SSIM is seen for
underexposed and overexposed images and
worsens all other noise types. For the Laplacian
tone mapping, alpha has a larger effect than beta
on performance. Of the methods discussed,
PSNR and SSIM
underexposed images. However, there is a more
severe effect on other noise types. Contrary to the

improve the most for

quantitative measures, many images improve
qualitatively with exposure correction strategies
(Figure 5). Histogram equalization qualitatively
improves most noise types. Bilateral tone
mapping improves all except overexposed
images and gaussian noise images. Laplacian
tone mapping improves poor exposure images
better but has less positive qualitative effects on
other noise types. The notable exception to
consider is certain gaussian noise which can be
emphasized in place of the image details. This
could result in hallucinated artifacts that are not
representative of the true image.

Low Resolution. The simple form of bicubic

interpolation applied minimal
improvement to all noise types. Unsharp masking

is the only strategy to show

provides

—o— Filtersd FSNR
-- Baselire Nosy PSNA

significant improvement in low
resolution images in PSNR and
However, it can
significantly  impact image
quality in other noise types,
particularly gaussian  noise
sharpened by the mask.

Multi-Noise. The most effective
measure of poor exposure was
average pixel

Figure 5. Image Enhancement via adaptive histogram equalization not reflected in quantitative measures

intensity which



is higher for overexposed images (> 125) and
lower in underexposed images (< 80). Other
correlated but to a lesser degree factors were
peak intensity value (overexposed: > 150 and
underexposed: < 80). Due to the noise model,
overexposed images also featured a larger
standard deviation (> 50) while underexposed
images had a lower standard deviation (< 40).
Gaussian noise exclusively had a high standard
deviation (> 50). Skew and contrast were not
reliable metrics to identify noise types as trends
hold within an image, but variability is high across
images. Low resolution and motion blurred
images have a low FFT defined blur (<7) and alow
Laplacian variance (< 400). Low resolution
images were particularly identifiable with lower
values (FFT blur: < 6 and Laplacian blur: < 40).

When it comes to applying denoising
strategies, the noise sources matter to the
application of which strategies and when. For an
order of application example, in an image with
low resolution, motion blur, gaussian noise, and
underexposure, it is more effective to denoise via
BM3D followed by adaptive histogram
equalization than vice versa (Figure 6). Further
image enhancement steps only marginally
improve the image.

Noisy| PSNR=8.91 | SSIM=0.05

Noisy| PSNR=8.91 | SSIM=0.05

Figure 6. Comparison of order of denoising strategies to image with 4 noise sources (low

resolution, underexposure, gaussian, motion blur)

BM3D Only | PSNR=11.19 | SSIM=0.37 BM3D -> Hist. Eq. | PSNR=16.79 | SSIM=0.48
-
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Discussion

From our results, we can tell that denoising
strategies are highly effective against their
targeted noise type but can inadvertently degrade
image quality when applied to non-targeted
distortions. Identifying noise sources is critical
for effective application of conventional
denoising strategies like the ones explored here.
Furthermore, methods perform best in a
particular order dependent on the image and the
strategies chosen. From our results, the largest
enhancements can be obtained via gaussian
noise removal and exposure correction. Tone
mapping can reveal hidden features in images if
the quality starts at a reasonable threshold.

There are several limitations to this work. First,
only conventional methods of image
enhancement were tried without CNNs. CNNs
greatly expand the possibilities for this work,
particularly if they can either be trained on a
variety of noisy data or have the different
denoising strategies tuned in separate stages (for
example, wiener deconvolution + CNN denoiser
performing better than the CNN alone). All the
methods discuss, while straightforward to
implement, also suffer from needing manual
input of parameters. Preferably,
- these parameters would be
chosen based on noise
measurements and strategies
chosen. Importantly, exposure
correction methods enhance
aspects of the image (edges,
contrast), revealing background
details previously obscured.
Image  enhancement  holds
promise for improving CCTV
images but cannot be captured
quantitatively by PSNR or SSIM as
the image is differentiated from the original.



Ideally to move this work forward we
would want to create a comprehensive model of
the different noise types when stacked. Further,
we may want to consider Poisson noise in low
light conditions or refractive noise from weather
events such as rain or snow. We would then want
to format a convex optimization objective to
quickly and decisively tune parameters for image
improvement. Realistically, CNN’s and other
optimizing algorithms hold the most promise for
this work as it can better treat individual images
[16-21]. For example, motion kernels can be
estimated by image patch and edge detection is
often inherentin CNN layers.
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Appendix 1. Five Noise Types at 3 Levels of Severity

Effect of Laplacian Tone Mapping on Different Noise Types
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Ap p en d IX Appendix 2. PSNR & SSIM Comparison for Laplacian Tone
Mapping on all Noise Types and levels, varying tunable
parameter alpha
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Exposure Correcbon with Optimal Alpha for PSNR
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Appendix 3 Qualitative Comparisons for Laplacian Tone Mapping
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