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Enhancing and Revealing Hidden Image 
Details 
Madeline Hays 

0 | Abstract 
This report explores conventional image enhancement techniques for improving degraded images 
encountered in real-world scenarios, such as surveillance footage. We focus on four primary sources of 
image degradation: fixed-additive noise, motion blur, poor exposure, and low resolution. Our study 
evaluates various denoising strategies, including filtering, deconvolution, exposure correction, and super-
resolution, using both quantitative (PSNR, SSIM) and qualitative assessments. A subset of images from the 
BSDS300 dataset was systematically degraded and processed using different enhancement techniques to 
analyze their effectiveness. Results indicate that the most effective enhancements are highly dependent on 
the specific noise type, with Gaussian noise filtering and exposure correction providing the most significant 
improvements. Additionally, we demonstrate that the order of enhancement steps affects final image 
quality. While conventional methods offer improvements, their reliance on manual parameter tuning 
presents limitations, suggesting that adaptive optimization and deep learning-based approaches hold 
promise for future advancements in image restoration and enhancement.

1 | Introduction 
The quality of photographic records directly 
affects their interpretability. While phone 
cameras have made significant advancements in 
resolution and HDR contrast, public and 
commercial security cameras often remain low-
quality CCTV systems. These cameras are 
affected by various forms of image degradation, 
including weather, lighting conditions, electronic 
noise, and motion blur [1,2]. Despite these 
limitations, such footage is critical for law 
enforcement investigations, where clear images 
can provide stronger evidence than 
circumstantial reports [3]. Replacing all 
surveillance cameras with high-quality 
alternatives is cost-prohibitive, making image 
enhancement an essential tool. 

 

Our goal is to examine the interplay 
between different types of image degradation and 
conventional enhancement techniques. We 
investigate how the strategies influence other 
forms of non-targeted noise as many low-quality 
images face multiple noise sources. Our aim is to 
improve image quality while avoiding hallucinated 
artifacts. 

2 | Related work 
We address four primary sources of image 
degradation: fixed-additive noise, motion blur, 
poor exposure, and low resolution. Each can be 
mitigated using established image-processing 
techniques. 



EE 367 Final Report – Winter 2025 
 

 Fixed-additive noise can be modeled as 
gaussian white noise, commonly originating 
pixel-to-pixel variations and readout circuitry. 
Conventional denoising techniques include 
filters. Gaussian filters provide local, linear 
smoothing while median filters provide local, 
non-linear smoothing. Edge preserving filters 
include anisotropic filters, utilizing a form of 
orthogonal convolution, and bilateral filters, 
weighting pixels in local neighborhoods with 
similar intensities more strongly [4,5]. Block-
matching 3D filtering (BM3D) considers patterns 
within images by grouping blocks of the image by 
structural similarities. Groups are subjected to 
discrete cosine transforms followed by 
thresholding [6]. 

 Motion blur occurs when object move 
during image capture. Wiener deconvolution 
attempts to inverse this blur along with an SNR 
damping factor to allow for the presence of 
gaussian noise. An alternative method, the 
Richardson-Lucy (RL) deconvolution assumes a 
Poisson noise model common in low-light 
conditions and works iteratively to remove blur 
[7,8]. However, both these methods assume 
prior knowledge of the blur kernel. Blind 
deconvolution techniques iteratively use a 
normalized sparsity regularizer to optimize a blur 
kernel estimate [9].  

 Poor exposure encompasses low-light 
and overexposed conditions. Tone mapping 
works to enhance contrast and color by scaling 

luminance while maintaining high-contrast 
details. For example, tone mapping with a 
bilateral filter applies the filter to the intensity 
information of the image and preserves detail by 
subtracting the output of the filter from the input 
when reconciling the image. Tone mapping with a 
local Laplacian filter uses the logarithmic space 
to compress the dynamic range of the image 
while preserving the local contrast [11-13].  

Low resolution arises due to limited 
pixel density in wide-field surveillance cameras. 
Enhancement methods include unsharp 
masking, which amplifies high-frequency 
components, and bicubic interpolation, which 
smooths pixelation artifacts [14,15]. 

3 | Method 
Our methodology comprises of four key steps 
(Figure 1). 

3.1 | Modeling Noise 
To explore these inter-relationships of noise 
sources and denoising strategies, we first must 
model the various noise sources ( Figure 2). 

Figure 1. Project Methodology Pipeline 

Figure 2. (a) Clean Image (b) Gaussian Noise (c) Motion Blur (d) 
Overexposure (e) Underexposure (f) Low Resolution 
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Gaussian noise was modeled as a white noise 
added to each pixel (Eq. 1). Levels assessed were 
𝜎 = [0.1, 0.3, 0.6]. 

𝐼𝑛𝑜𝑖𝑠𝑦(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝑁(𝑥, 𝑦) 

𝑁(𝑥, 𝑦)~ 𝒩(0,  𝜎)  Eq. 1 

𝐼(𝑥, 𝑦) is the original image at pixel (x,y). 𝑁(𝑥, 𝑦) is 
the Gaussian noise distributed with mean 0 and 
standard deviation 𝜎 at pixel (x,y).  

Motion blur was modeled as a 2D convolutional 
operation with a normalized horizontal blur matrix 
(Eq. 2). Levels assessed were N = [5, 10, 20]. 

𝐼𝑏𝑙𝑢𝑟𝑟𝑒𝑑(𝑥, 𝑦) = (𝐼 ∗ 𝐾)(𝑥, 𝑦) 

𝐾(𝑢, 𝑣) =
1

𝑁
[
0 ⋯ 0
1 … 1
0 ⋯ 0

] ,   𝑁 = 𝑠𝑖𝑧𝑒(𝐾) Eq. 2 

𝐾 is the blur kernel representing the point spread 
function.  

Poor exposure was modeled as a scaling of pixel 
intensities where a scale below 1 increased 
shadows and scale above 1 increased brightness 
(Eq. 3). The levels for underexposure and 
overexposure were 𝑓 = [0.7, 0.5, 0.3] and 𝑓 = [1.3, 
1.6, 2.2], respectively. 

𝐼𝑒𝑥𝑝(𝑥, 𝑦) = 𝑓 ∙ 𝐼(𝑥, 𝑦) 

𝑈𝑛𝑑𝑒𝑟𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒:  0 < 𝑓 < 1 

𝑂𝑣𝑒𝑟𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒:  𝑓 > 1  Eq. 3 

The variable 𝑓 is the scaling factor.  

Low resolution was modeled by applying an anti-
aliasing low-pass gaussian filter followed by 
down-sampling of the image (Eq. 4). The factors 
of down-sampling were s = [2, 4, 8]. 

𝐼𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 − 𝑢, 𝑦 − 𝑣)𝐺(𝑢, 𝑣, 𝜎)

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝑘

  

𝐼𝑑𝑜𝑤𝑛(𝑥
′, 𝑦′) = 𝐼𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑠𝑥

′, 𝑠𝑦′) 

𝐺(𝑢, 𝑣, 𝜎) =
1

2𝜋𝜎2 𝑒
−
𝑢2+𝑣2

2𝜎2 ,   

 𝜎 =
𝑠

2
,   𝑠 = 𝑠𝑐𝑎𝑙𝑒,   𝑘 = 𝑟𝑎𝑑𝑖𝑢𝑠  Eq. 4 

Where 𝐺(𝑢, 𝑣, 𝜎) is the gaussian filter and (𝑥′, 𝑦′) 
are the new pixel coordinates.  

3.2 | Denoising Strategies 
To denoise the images, we investigated strategies 
of four main categories: filters, deconvolution, 
exposure correction, and sharpening. All 
strategies were varying tunable parameters for all 
noise types at the reported levels.  

Filters. Gaussian filters (Eq. 4 - Lowpass) were 
applied with varying  𝜎 from 0.1 to 1.2 in 12 linear 
steps. Median filters (Eq. 5) were applied with 
varying kernel sizes, r, of 2 to 11 in linear spaces 
of 1. Bilateral filters [4,5] were applied with a 
radius of 3, intensity 𝜎 of 0.25, and varying spatial 
𝜎 of 0.3 to 2.4 in 12 linearly spaced steps. 
Anisotropic filters [5] were applied gradient 
threshold of 10, step size of 0.15, and varying 
number of iterations from 5 to 50 in 10 linear 
steps. Total variation minimization [5] was 
applied with varying weight of 0.05 to 0.95 in 10 
linear steps. Finally, BM3D [6] was applied with 
varying 𝜎 from 0.1 to 0.9 in 9 linear spaced steps.  

𝐼𝑓𝑖𝑙𝑡(𝑥, 𝑦) = 

median({𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) |  − 𝑟 ≤ 𝑖, 𝑗 ≤ 𝑟}) Eq. 5 

Where the median function selects the median 
value from neighboring pixels of window size (2r+1) 
x (2r+1).  

Deconvolution. Wiener deconvolution (Eq. 6) 
and RL deconvolution [7,8]. Kernel sizes were 
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varied from 2 to 20 in 10 linear steps for both 
methods. 

𝐼(𝑢, 𝑣) =
𝐼𝑏̂(𝑢,𝑣)⋅𝐻

∗(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2+𝑆𝑛(𝑢,𝑣)/𝑆𝑓(𝑢,𝑣)
  Eq. 6 

Where 𝐼(𝑢, 𝑣) is the FFT of the deconvolved image, 
𝐼𝑏̂(𝑢, 𝑣) is the FFT of the noised image, 𝐻(𝑢, 𝑣) is 
the optical transform function, and 𝑆(𝑢, 𝑣) is the 
power spectral density of the noise and the image, 
respectively.  

Exposure Correction. Adaptive histogram 
equalization was applied varying the 
neighborhood size from 2 to 20 in 10 linear steps 
[10]. Bilateral tone mapping [11] was applied with 
a spatial 𝜎 of 15 and 𝜎 range varying from 0.1 to 1 
in 10 linear steps.  Finally, Laplacian tone 
mapping [12] was applied. In this function alpha 
controls contrast and beta controls edge 
preservation. One set applied set alpha to 1.5 and 
varied beta from 0.1 to 0.9 in 9 linear steps, and 
the other set applied set beta to 0.5 and varied 
alpha from 0.3 to 3 in 10 linear steps.  

Low Resolution. A simple implantation of bicubic 
interpolation [14] was applied varying the scale 
factor from 2 to 12 in 10 linear steps. Unsharp 
masking [15] was applied with a 𝜎 of 1.5 and 
varying sharpening strength from 0.5 to 2.5 in 10 
linear steps.  

3.3 | Evaluation Metrics 
For comparison, we have 50 images that were 
noised with one of 5 noise types at 3 levels of 
noise per type. To assess denoising strategy 
performance, we compared peak signal noise 
ratio (PSNR) and structural similarity index 
measure (SSIM) between the noised image and 
the clean image averaged across the dataset to 
establish a baseline. Denoising strategy 
performance was evaluated by applying each 

strategy at the specified parameters to each 
noised image and calculating the average PSNR 
and SSIM between the denoised image and the 
clean image to determine quantitative 
performance. Then, using the best attempted 
tuned parameter for either SSIM or PSNR, an 
example image was displayed for each noise type 
and level to check perceptual performance.  

3.4 | Multi-Noise Processing 
Several strategies were attempted to classify a 
noised image by the noise type. These include 
peak intensity value, average intensity value, 
standard deviation of intensities, image skew, 
and image contrast by percentile difference, blur 
as average log magnitude of the image FFT, and 
blur as the Laplacian variance of the image.   

 Sample images were subjected to 
multiple noise sources. Denoising strategies 
were performed in sequence and compared to 
determine potential impacts on effective image 
enhancement.  

Results 
Example results for noised images at the varying 
levels, denoised image PSNR and SSIM 
comparison, and denoised images using 
optimum filter are displayed in the Appendix. For 
full results, see final code  

Filters. Filters provided the most effective 
smoothing for Gaussian noise, with BM3D 
outperforming other methods. However, most 
filters negatively impact non-Gaussian noise 

Figure 3 Gaussian Filter performance on 50 overexposed images 



EE 367 Final Report – Winter 2025 
 

types with few exceptions. For example, 
Gaussian filters have the potential to improve 
SSIM in certain overexposed images but results in 
a drop in PSNR (Figure 3). Bilateral filtering, while 
computationally demanding, improves gaussian 
noise and has the potential to improve motion 
blur and overexposure given its edge-preserving 
methods and spatial smoothing, respectively.  

Deconvolution. 
Deconvolution did 
not serve well to 
the various noise 
types. Wiener 
deconvolution had 
the potential to 
improve images of 
gaussian noise but 
struggled with 
unknown blur 
kernels. RL 
deconvolution can 

perceptually strengthen edges (Figure 4) but also 
struggled to improve PSNR and SSIM in noise 
types including gaussian noise.  

Exposure Correction. Adaptive histogram 
equalization works well on underexposed images 
of significant degree in both PSNR and SSIM. 
However, only PSNR improves for mildly 

significantly overexposed images. For the other 
noise types, histogram equalization worsens 
image quality, but larger tile size has a reduced 
effect.  For the bilateral tone mapping, 
improvement in both PSNR and SSIM is seen for 
underexposed and overexposed images and 
worsens all other noise types. For the Laplacian 
tone mapping, alpha has a larger effect than beta 
on performance. Of the methods discussed, 
PSNR and SSIM improve the most for 
underexposed images. However, there is a more 
severe effect on other noise types. Contrary to the 
quantitative measures, many images improve 
qualitatively with exposure correction strategies 
(Figure 5). Histogram equalization qualitatively 
improves most noise types. Bilateral tone 
mapping improves all except overexposed 
images and gaussian noise images. Laplacian 
tone mapping improves poor exposure images 
better but has less positive qualitative effects on 
other noise types. The notable exception to 
consider is certain gaussian noise which can be 
emphasized in place of the image details. This 
could result in hallucinated artifacts that are not 
representative of the true image.  

Low Resolution. The simple form of bicubic 
interpolation applied provides minimal 
improvement to all noise types. Unsharp masking 

is the only strategy to show 
significant improvement in low 
resolution images in PSNR and 
SSIM. However, it can 
significantly impact image 
quality in other noise types, 
particularly gaussian noise 
sharpened by the mask.  

Multi-Noise. The most effective 
measure of poor exposure was 

average pixel 
intensity which 

Figure 4 RL Deconvolution on 
Gaussian Noise (0.3) Image 

Figure 5. Image Enhancement via adaptive histogram equalization not reflected in quantitative measures 
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is higher for overexposed images (> 125) and 
lower in underexposed images (< 80). Other 
correlated but to a lesser degree factors were 
peak intensity value (overexposed:  > 150 and 
underexposed: < 80). Due to the noise model, 
overexposed images also featured a larger 
standard deviation (> 50) while underexposed 
images had a lower standard deviation (< 40). 
Gaussian noise exclusively had a high standard 
deviation (> 50). Skew and contrast were not 
reliable metrics to identify noise types as trends 
hold within an image, but variability is high across 
images. Low resolution and motion blurred 
images have a low FFT defined blur (< 7) and a low 
Laplacian variance (< 400). Low resolution 
images were particularly identifiable with lower 
values (FFT blur: < 6 and Laplacian blur: < 40). 

When it comes to applying denoising 
strategies, the noise sources matter to the 
application of which strategies and when. For an 
order of application example, in an image with 
low resolution, motion blur, gaussian noise, and 
underexposure, it is more effective to denoise via 
BM3D followed by adaptive histogram 
equalization than vice versa (Figure 6). Further 
image enhancement steps only marginally 
improve the image.  

Discussion 
From our results, we can tell that denoising 
strategies are highly effective against their 
targeted noise type but can inadvertently degrade 
image quality when applied to non-targeted 
distortions.  Identifying noise sources is critical 
for effective application of conventional 
denoising strategies like the ones explored here. 
Furthermore, methods perform best in a 
particular order dependent on the image and the 
strategies chosen. From our results, the largest 
enhancements can be obtained via gaussian 
noise removal and exposure correction. Tone 
mapping can reveal hidden features in images if 
the quality starts at a reasonable threshold.  

There are several limitations to this work. First, 
only conventional methods of image 
enhancement were tried without CNNs. CNNs 
greatly expand the possibilities for this work, 
particularly if they can either be trained on a 
variety of noisy data or have the different 
denoising strategies tuned in separate stages (for 
example, wiener deconvolution + CNN denoiser 
performing better than the CNN alone). All the 
methods discuss, while straightforward to 
implement, also suffer from needing manual 

input of parameters. Preferably, 
these parameters would be 
chosen based on noise 
measurements and strategies 
chosen. Importantly, exposure 
correction methods enhance 
aspects of the image (edges, 
contrast), revealing background 
details previously obscured. 
Image enhancement holds 
promise for improving CCTV 
images but cannot be captured 
quantitatively by PSNR or SSIM as 

the image is differentiated from the original.   

Figure 6. Comparison of order of denoising strategies to image with 4 noise sources (low 
resolution, underexposure, gaussian, motion blur) 
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 Ideally to move this work forward we 
would want to create a comprehensive model of 
the different noise types when stacked. Further, 
we may want to consider Poisson noise in low 
light conditions or refractive noise from weather 
events such as rain or snow. We would then want 
to format a convex optimization objective to 
quickly and decisively tune parameters for image 
improvement. Realistically, CNN’s and other 
optimizing algorithms hold the most promise for 
this work as it can better treat individual images 
[16-21]. For example, motion kernels can be 
estimated by image patch and edge detection is 
often inherent in CNN layers.  
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Appendix 1. Five Noise Types at 3 Levels of Severity 

 

Appendix 2. PSNR & SSIM Comparison for Laplacian Tone 
Mapping on all Noise Types and levels, varying tunable 
parameter alpha 
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Appendix 3 Qualitative Comparisons for Laplacian Tone Mapping 
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