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Diffusion Posterior Sampling for Fourier
Compressed Sensing
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Abstract—This study introduces Diffusion Posterior Sampling (DPS) as an effective approach to Fourier compressed sensing,
specifically targeting accelerated MRI reconstruction. Utilizing a pretrained latent diffusion model (LDM), DPS significantly enhances
reconstruction quality compared to conventional methods such as GRAPPA, achieving superior structural similarity (SSIM) and peak
signal-to-noise ratio (PSNR) across various acceleration factors. Performance analyses highlight the critical role of undersampling
patterns, with the Variable Density (VD) Poisson Disc pattern consistently yielding optimal results. Ablation studies emphasize the
importance of hyperparameter tuning, notably inference step size and gradient descent step size (ζ), in optimizing reconstruction
performance. The results confirm DPS as a promising method for high-quality MRI reconstruction, paving the way for future work on
the joint optimization of undersampling patterns and diffusion models.
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1 INTRODUCTION

COMPRESSED sensing (CS) has transformed the field
of image acquisition by enabling high-quality image

reconstruction from significantly fewer measurements. This
is achieved by exploiting the inherent sparsity of natural
images in specific transform domains. The foundational CS
theory [1] ensures that an image can be accurately recon-
structed from a randomly sampled subset of its frequency
components, provided it has a sparse representation.

Fourier compressed sensing (Fourier CS) is a specialized
form of CS where measurements are taken in the discrete
Fourier transform (DFT) domain. Given that most natural
signals and medical images exhibit concentrated energy in
low-frequency (LF) components, Fourier CS achieves high-
fidelity reconstructions by prioritizing LF sampling. This
property has led to its extensive application in various elec-
tromagnetic imaging modalities, including magnetic reso-
nance imaging (MRI) [2].

The effectiveness of Fourier CS depends on two key
factors: the reconstruction algorithm and the undersampling
pattern used in k-space. Conventional parallel imaging
methods like GRAPPA [3] leverage coil sensitivity profiles
to interpolate missing k-space data but struggle under high
acceleration rates. Recent advancements have focused on
optimizing both the reconstruction model and the under-
sampling pattern to improve performance [4].

In this work, we introduce Diffusion Posterior Sampling
(DPS) as an alternative approach for solving the Fourier
CS problem. DPS employs a pretrained latent diffusion
model (LDM) to iteratively refine the reconstructed image
by leveraging the prior knowledge embedded in the model.
Unlike conventional methods, DPS does not require explicit
training on MRI-specific data, yet it effectively mitigates
aliasing artifacts and enhances reconstruction quality.

We conduct extensive evaluations of DPS on acceler-
ated MRI reconstruction, comparing it with the GRAPPA
method across different acceleration factors. Additionally,
we analyze the impact of undersampling masks, demon-
strating that the Variable Density (VD) Poisson Disc pattern

consistently outperforms uniform and Gaussian random
sampling patterns. Furthermore, ablation studies reveal the
importance of inference step size and gradient descent step
size (ζ) in optimizing reconstruction quality.

In conclusion, DPS provides a promising alternative to
conventional CS reconstruction methods, leveraging dif-
fusion models for high-quality image restoration. Future
work will focus on refining the undersampling pattern and
integrating learnable sampling strategies to further enhance
reconstruction performance.

2 RELATED WORK

2.1 Latent Diffusion Models for Image Reconstruction
Diffusion models have emerged as powerful generative pri-
ors for solving inverse problems in imaging. Among these,
Latent Diffusion Models (LDMs) [5] operate in a compressed
latent space, significantly reducing computational complex-
ity while preserving high-quality outputs. This characteris-
tic makes LDMs particularly effective for MRI reconstruc-
tion, as MR images naturally exhibit redundancy that can
be efficiently represented in lower-dimensional manifolds.

Given a medical image x ∈ RH×W×C , where H , W ,
C denote the height, width, and coil dimensions, respec-
tively, an encoder E maps x to a latent representation
z = E(x) ∈ Rh×w×C . The decoder D then reconstructs the
image as x̃ = D(z). Typically, a Variational Autoencoder
(VAE)-based structure [6] is employed to learn this encoder-
decoder pair.

In LDMs, the model ϵθ(zt, t) is trained to estimate a
noise-free reconstruction of the input latent features zt,
where zt represents a noisy transformation of the original
input at time step t ∈ [0, T ]. The diffusion model is trained
using the following objective:

EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
. (1)

DPS [7] extends the application of diffusion models to
inverse problems, including Fourier compressed sensing. By
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Fig. 1. Overview of the proposed method. (a) Diffusion step for solving the Fourier compressed sensing problem. (b) Visualization of the estimated
reconstructed image through the diffusion process.

iteratively refining the reconstruction through a diffusion-
based prior and a data consistency term, DPS enables high-
fidelity recovery of MR images without requiring explicit
retraining on MRI datasets.

2.2 GRAPPA and Parallel Imaging Techniques

Traditional MRI acceleration techniques rely on parallel
imaging, where multiple receiver coils acquire k-space data
simultaneously. A widely used method, Generalized Au-
tocalibrating Partially Parallel Acquisitions (GRAPPA) [3],
estimates missing k-space lines by exploiting the spatial
redundancy across multiple coils.

GRAPPA reconstructs the missing k-space data through
a linear combination of acquired k-space signals, with coil-
specific weights derived from autocalibration signal (ACS)
lines. While GRAPPA effectively reduces scan time and
mitigates aliasing, its performance deteriorates under high
acceleration factors due to the increased interpolation error.
Additionally, GRAPPA is inherently limited by the availabil-
ity and quality of ACS lines, making it less robust in cases
where autocalibration data is sparse or undersampled.

Recent advancements in deep learning have explored
alternative reconstruction approaches that incorporate
learned priors from generative models. Unlike GRAPPA,
DPS does not rely on explicit coil sensitivity calibration but
instead leverages the powerful prior of a pretrained diffu-
sion model to iteratively refine the reconstructed image. This
makes DPS particularly advantageous for high-acceleration
MRI reconstruction, where conventional methods struggle
to maintain image quality.

3 THEORY AND METHODS

3.1 Background Theory
Magnetic Resonance Imaging (MRI) acquisition relies on
sampling k-space data, where undersampling accelerates
imaging at the cost of introducing aliasing artifacts. The MRI
forward model for an input image x can be expressed as:

y = F−1PFS(x) + n, (2)

where y ∈ RH×W represents the reconstruction from
acquired k-space measurements, P is the undersampling
mask, F is the Fourier transform operator, and S is the
sensitivity map accounting for multiple coil acquisitions.
The noise term n ∼ N (0, σ2) models general measurement
noise.

The goal of reconstruction is to recover the original
image x by solving:

x̂ = argmin
x

∥F−1PFS(x)− y∥22 +R(x), (3)

where R(x) is a regularization term acting as a prior
p(x) to enforce realistic image constraints. Traditional ap-
proaches, such as GRAPPA, estimate missing k-space lines
through coil sensitivity interpolation. In contrast, recent
methods employ learned priors, such as diffusion models,
to guide reconstruction.

3.2 Diffusion Posterior Sampling for Fourier Com-
pressed Sensing
Diffusion models define a stochastic process that transforms
data into noise and learns to reverse this process. In Dif-
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Fig. 2. (Top row) Undersampling patterns corresponding to an acceler-
ation factor of R = 20. (Bottom row) Visualization of the corresponding
reconstructed image using the proposed method.

fusion Posterior Sampling (DPS) [7], a pretrained latent
diffusion model (LDM) is utilized to iteratively refine the
reconstruction. The prior p(x) is modeled in the latent space,
p(z), where z = E(x) is a lower-dimensional representation
of x.

At each iteration t, the log-likelihood gradient is com-
puted as:

∇xt
log p(xt|y) = ∇xt

log p(xt) +∇xt
log p(y|xt), (4)

where ∇xt log p(xt) is the diffusion step guided by the
pretrained model and ∇xt log p(y|xt) enforces data con-
sistency using the MRI forward model. The clean image
estimate x̂0 is obtained as:

x̂0 = E[x0|xt], (5)

which is further refined in the latent space through
gradient updates:

∇zt log p(y|zt) = ∇zt log p(y|D(E[z0|zt])). (6)

3.3 Proposed Method
Figure 1 illustrates the proposed DPS-based MRI recon-
struction framework. The process starts with an initial noise
representation zT in latent space, which undergoes iterative
refinement via diffusion and data consistency steps.

In the Data Consistency step, the ℓ2-norm between the
acquired measurement y and the MRI forward operation
of the estimated reconstruction, F−1PFSx̂0, is minimized.
This ensures alignment with the acquired k-space data while
preventing overfitting to noise. The latent variable zt is
updated via gradient descent to improve fidelity. The final
reconstruction is obtained by decoding the refined latent
representation:

x̂0 = D(ẑ0), (7)

where D maps the latent representation back to the
image space. Figure 1(b) visualizes the evolution of the
reconstruction, demonstrating how the proposed method
progressively refines the MRI image, effectively mitigating
aliasing artifacts and enhancing structural details.

4 ANALYSIS AND EVALUATION

In this work, we evaluate the proposed Diffusion Posterior
Sampling (DPS) method against the conventional GRAPPA
method for accelerated MRI reconstruction. Quantitative
and qualitative analyses are conducted across various ac-
celeration factors to access reconstruction quality.

4.1 Undersampling Masks
To analyze the impact of different undersampling patterns,
we generated three distinct masks for each acceleration rate.
Figure 2 illustrates these masks for an acceleration factor of
R = 20:

- Uniform Random Mask: Samples points randomly
from a uniform distribution without considering spatial
constraints. - Gaussian Random Mask: Samples points
randomly from a Gaussian distribution, concentrating more
samples in the central k-space region. - Variable Density
(VD) Poisson Disc Pattern: Ensures an adaptive spatial
distribution, maintaining a balance between dense sampling
in low-frequency regions and sparse sampling in high-
frequency regions.

All undersampling patterns operate in Cartesian space.
The mask size matches the image dimensions, 512 × 512,
with an autocalibration signal (ACS) region of 32× 32. The
VD Poisson Disc pattern has been observed to yield superior
reconstruction performance due to its optimal coverage of
k-space information.

4.2 Evaluation Datasets
To comprehensively evaluate the proposed method, we
conducted experiments on three datasets:

1. Brain MRI images from the FastMRI dataset [8]. 2.
Knee MRI images from the FastMRI dataset. 3. Sample
images from the CelebA dataset [9].

For the FastMRI dataset, we converted multi-coil acqui-
sitions into a single-coil format to align with the reconstruc-
tion framework. We evaluate reconstruction performance
using two key metrics; Strurctural Similarity Index (SSIM)
and Peak Signal-to-Noise Ratio (PSNR).

The reported SSIM and PSNR values are averaged across
all test samples to provide a robust assessment of the general
reconstruction performance.

4.3 Diffusion Model Configuration
We employ a pretrained Stable Diffusion v2.1-base
model [5], originally trained on a general large im-
age dataset. The model operates in a compressed la-
tent space, significantly reducing computational complexity
while maintaining high-fidelity reconstructions.

For inference, we set the default diffusion step size to
T = 1000 and use the Euler Discrete Scheduler to control
the iterative denoising process. Hyperparameter tuning,
including gradient step size (ζ), was conducted to optimize
reconstruction stability and accuracy.
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Fig. 3. Results of DPS applied to several inverse problems.

5 EXPERIMENTAL RESULTS

5.1 Solving Inverse Problems with DPS

Before evaluating DPS on Fourier Compressed Sensing, we
first assessed its performance on simpler inverse problems,
including image inpainting and deconvolution (Task 6 of the
default Diffusion Project). These preliminary experiments
provided insights into the model’s capability to restore
missing or degraded image structures.

The results of DPS applied to inverse problems are
shown in Figure 3:

- First row: Image inpainting with a rectangular mask. -
Second row: Image inpainting with 50% of pixels randomly
masked. - Third row: Image deconvolution with Gaussian
blur (kernel size = 61, standard deviation = 3.0).

For quantitative evaluation, we measured Peak Signal-
to-Noise Ratio (PSNR) and Learned Perceptual Image Patch
Similarity (LPIPS):

- Image inpainting with a rectangular mask: PSNR =
35.85, LPIPS = 0.0097. - Image inpainting with a random
mask: PSNR = 15.71, LPIPS = 0.2757. - Image deconvolu-
tion: PSNR = 28.17, LPIPS = 0.0594.

The results indicate that DPS performs well for struc-
tured inpainting and deconvolution tasks. However, perfor-
mance degrades for randomly masked inpainting due to the
lack of structured context, demonstrating the limitations of

Acceleration (R) Undersampling Pattern SSIM PSNR

5x
Uniform Random 0.8728 29.63
Gaussian Random 0.9015 29.72
VD Poisson Disc 0.9119 30.88

10x
Uniform Random 0.8175 27.68
Gaussian Random 0.8783 29.57
VD Poisson Disc 0.8981 28.88

15x
Uniform Random 0.7749 26.15
Gaussian Random 0.8648 29.38
VD Poisson Disc 0.8852 30.31

20x
Uniform Random 0.7230 24.41
Gaussian Random 0.8454 28.49
VD Poisson Disc 0.8832 29.86

TABLE 1
Quantitative results for MRI reconstruction using DPS with various

acceleration factors and undersampling patterns.

Fig. 4. Comparison of DPS with conventional GRAPPA.

diffusion-based priors when large portions of image content
are missing.

5.2 Fourier Compressed Sensing Reconstruction
DPS was evaluated for MRI reconstruction using different
undersampling patterns and acceleration factors. Figure 2
presents samples of visualization of the reconstructed im-
ages, while Table 1 summarizes the quantitative results.

VD Poisson Disc consistently achieved the best recon-
struction performance, suggesting that it provides optimal
k-space coverage for DPS-based reconstruction.

5.3 Comparison with GRAPPA
We compared DPS with GRAPPA across different accel-
eration factors. Figure 4 highlights that DPS consistently
outperforms GRAPPA, particularly at higher acceleration
rates. For instance, at R = 20, DPS achieves an SSIM
of 0.8832 and a PSNR of 29.86 dB, while GRAPPA yields
0.6097 and 18.09 dB, respectively. The results confirm that
DPS better preserves fine structures and reduces aliasing
artifacts, reinforcing its suitability for high-quality MRI re-
construction.

5.4 Ablation Studies
We conducted ablation studies on inference step size and
gradient descent step size (ζ) to assess their impact on
reconstruction quality.

Inference Step Size: As shown in Figure 5, increasing
the number of steps improves reconstruction quality. Per-
formance peaks at 1000 steps (SSIM = 0.8728, PSNR = 29.63
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Fig. 5. Ablation study on inference step size.

Fig. 6. Ablation study on gradient descent step size (ζ).

dB), which is the default hyperparameter, beyond which
computational costs outweigh further gains.

Gradient Descent Step Size (ζ): Figure 6 shows that
an optimal ζ value of 1.4 achieves the best reconstruction
quality. Smaller values lead to insufficient updates, while
excessively large values cause instability.

6 DISCUSSION AND CONCLUSION

This study introduced Diffusion Posterior Sampling (DPS)
as an effective approach for solving Fourier compressed
sensing problems, with a particular focus on MRI re-
construction. Compared to conventional parallel imaging
methods such as GRAPPA, DPS demonstrated superior
performance across multiple acceleration factors, achieving
consistently higher Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR). The ability of DPS to
leverage a pretrained latent diffusion model (LDM) allowed
it to effectively mitigate aliasing artifacts and restore fine
structural details without requiring additional training on
MRI-specific datasets.

The choice of undersampling patterns played a signifi-
cant role in reconstruction performance. Among the tested
sampling strategies, the Variable Density (VD) Poisson Disc
pattern consistently outperformed uniform and Gaussian
random masks, highlighting the importance of structured k-
space sampling. The effectiveness of VD Poisson Disc sam-
pling suggests that strategic undersampling can enhance
the compatibility between acquired data and the generative
priors used in DPS reconstruction.

Ablation studies provided deeper insights into the im-
pact of key hyperparameters on DPS performance. Increas-
ing the inference step size improved reconstruction quality

by allowing more refined denoising steps, but computa-
tional cost increased significantly beyond 1000 steps with di-
minishing returns. Additionally, tuning the gradient descent
step size (ζ) in the data consistency step proved essential
for stability, with an optimal balance found at ζ = 1.4.
These findings reinforce the necessity of careful hyperpa-
rameter selection to maximize reconstruction fidelity while
maintaining efficiency.

In conclusion, DPS emerges as a promising alternative
to conventional compressed sensing reconstruction methods
by integrating diffusion-based priors for enhanced image
quality. Future research directions should explore joint opti-
mization of undersampling patterns and diffusion models,
as well as the incorporation of learnable sampling strategies.
Further advancements may include adapting DPS to multi-
coil MRI reconstruction and extending its application to
other medical imaging modalities.
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