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Abstract—Speech Enhancement (SE) is a class of problems that relate to improving the quality of audio signals containing human
speech. Denoising is one of the most studied speech enhancement tasks, with effective algorithms required for the success of
technologies like VOIP and speech recognition. Many modern SE algorithms do not directly operate on the time domain waveform, but
instead use the Short-Time Fourier Transform (STFT) to transform the signal into a time-frequency spectrogram. The magnitude of the
STFT is treated as a 2D image, which is typically denoised via supervised deep learning, then used to reconstruct the denoised time
domain signal. This project aims to determine if lighter-weight classical denoising techniques designed for natural images can be
extended to this class of spectrum magnitude images. A proposed method using the BM3D algorithm as a preprocessing stage for a
CNN denoiser shows performance improvements in high-noise environments, potentially allowing for the use of smaller networks

without sacrificing denoising effectiveness.

1 INTRODUCTION

HE recovery of speech signals from noisy environments
Tis an important problem with applications in technolo-
gies such as mobile phones, speech recognition and hearing
aids. This is a difficult problem due to the rapid, time-
varying nature of speech signals and the variety of noise
sources in real environments.

Speech enhancement algorithms range from common
filtering techniques to deep neural networks. A popular
class of methods first use the Short Time Fourier Trans-
form (STFT) to produce a two dimensional time-frequency
magnitude spectrum to denoise instead of the raw speech
signal (Figure 1). This approach does not make full use of
the noisy signal’s phase information, but under the assump-
tion that the human ear is not sensitive to minor phase
variations, the denoising task is greatly simplified. With the
problem transformed into the denoising of a single-channel
2D image, image processing techniques like CNN denoisers
can be used to either map directly to a clean spectrum or
learn a mask to apply to the noisy image. Even with such
an unusual class of images, convolutional neural networks
are effective denoisers because they take advantage of an
image’s spatial structure (local time and frequency structure
in the case of STFT magnitudes) to learn sophisticated
mappings with a small number of parameters. The lesser
memory and computational cost of a CNN is desirable for
embedded applications like mobile devices that are often
used in crowded, noisy environments.

Considering the value of a computational and memory
efficient algorithm, applying a simpler image denoising
method to speech spectra could enable efficient, real-time
processing on even more resource constrained devices. The
primary difficulty in this approach is that many of these
lightweight image denoising algorithms were designed for
use on natural images and are only optimal under well
modeled additive Gaussian noise. The proposed method
addresses this by employing a classical denoising method
as a preprocessing stage for a CNN denoiser. Experiments
demonstrate that this hybrid technique outperforms the
non-neural network method and the CNN when used on

Fig. 1. STFT Magnitude Spectrum of Speech Signal

their own.

2 RELATED WORK

Early speech enhancement methods like Wiener filtering or
signal subspace SE [1] applied traditional signal processing
methods to the time domain noisy audio signal. These
methods often relied on a simple additive noise model and
were less robust to real noise sources.

Deep neural networks have become very popular for
speech enhancement due to their ability to generalize to
more complicated noise sources. It is also easy to generate
large amounts of synthetic training data by combining clean
speech samples with a variety of recorded noise samples,
both of which are readily available due to the growth of
speech recognition and speech enhancement research. The
majority of speech enhancement networks either operate on
the raw noisy audio signal or on the aforementioned STFT
magnitude spectrum, which sacrifices phase information for
simpler data that leads to more stable training.

SERGAN [2] is an example of a time-domain speech
enhancement method that uses a generative adversarial
network to learn a mapping directly between noisy speech
directly and a clean signal (Figure 2). The authors introduce
a relativistic generative adversarial model that addresses the
instability issues that come with time domain speech en-
hancement networks and generative adversarial networks
in general. SERGAN was shown to outperform other time
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Fig. 2. SERGAN Training Methodology

domain and spectral speech enhancement networks, at the
cost of a large and complex model.

Among time-frequency domain methods, models typi-
cally either learn a noise mask or a direct mapping to a de-
noised spectrum. In the first case, algorithms are inspired by
classical filtering methods that estimate a frequency domain
weighting rule that can be applied to the noisy spectrum
to suppress noisy components. Using a deep network like
a CNN to learn these masks overcomes the limitations that
classical filtering algorithms encounter when the noise dis-
tribution is not particularly well behaved. For example, Xu,
Elshamy and Fingscheidt [3] propose a novel loss function
that balances noise reduction with signal gain and use it to
train a CNN to predict masks from noisy STFT magnitude
spectra.

The latter class of time-frequency domain methods in-
volves training a model to directly map from noisy mag-
nitude spectra to clean magnitude spectra. Unsurprisingly,
CNN architectures developed for image denoising are also
able to effectively denoise these spectrograms. The Re-
dundant Convolutional Encoder-Decoder (R-CED) network,
proposed by Park and Lee [4], is an encoder-decoder net-
work where the encoder maps the input image into a higher
dimensional feature space instead of a lower dimensional
one. The decoder then projects back down into the input
space. The authors note that the use of a higher dimensional
intermediate feature space allows for more effective infer-
ence, working like the kernel trick. Taking full advantage
of the memory efficiency of convolutional networks, the R-
CED model required far fewer parameters to achieve the
same performance as competing architectures.

In general, time-frequency speech enhancement models
are memory and compute efficient, as well as more stable
during training, but fall slightly behind methods that make
better use of the noisy signal’s phase information in terms
of raw performance.

3 METHOD

The proposed method aims to improve a time-frequency
domain speech denoising model by preprocessing noisy
spectra with a classical image denoising algorithm. The hy-
brid method was evaluated against the denoising network
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on its own at different noise levels to determine if and when
such a hybrid approach offers performance improvements.
For each noise level and preprocessing method, an identical
denoising model was retrained from scratch to provide a fair
comparison. Additionally, the classical algorithm by itself
will be applied to the same test data to see if it is feasible to
forego the data-driven approach entirely.

3.1 Denoising Network

Park and Lee’s fully convolutional R-CED network [4] will
be used as the time-frequency denoising model in the fol-
lowing experiments. Specifically, the 33K parameter R-CED
variant with 16 convolutional layers and skip connections
every other layer was chosen because it outperformed all
other versions of the R-CED model except for the 100K
parameter, 20 layer design. The largest R-CED architecture
was not used due to constraints on training time. As shown
in Figure 3, the R-CED network takes a noisy STFT mag-
nitude frame along with the seven preceding frames as
input and produces a single clean STFT magnitude frame
as output. The entire noisy spectrum is passed through
the R-CED model, segment by segment, to produce the
denoised spectrum. Input and output spectrum segments
are normalized to have zero mean and unit variance. During
inference, training set statistics are used to normalize input
spectra and denormalize output spectra.

The input spectra are produced from the noisy speech
signals by applying a 256-point Short Time Fourier Trans-
form with a 64-point window shift. Following Park and
Lee’s method, the Hamming window function will be used.
Only the magnitude of the complex STFT spectrum is de-
noised.

The denoised speech signal is reconstructed by combin-
ing the denoised magnitude with the corresponding noisy
STFT phase components, applying the inverse transform.
Because the human ear is largely insensitive to phase, the
use of noisy phase does not have a major impact on model
performance. However, very large phase error (> 45°) can
lead to noticeable degradation in quality, so Park and Lee’s
‘phase aware scaling’ (Equation 1) is applied to target clean
magnitudes during training to ensure that the model learns
to attenuate STFT components with extreme differences
between clean and noisy phase.

anoisy) | (1)

Once again following the authors’ outlined method, the R-
CED model was trained using Adam with a batch size of 64.
The learning rate was started at ir = 0.0015 and decreased
to %, % and % after each epoch where the validation loss
fails to improve. After the next epoch with no validation
improvement, training is stopped.
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3.2 Preprocessing Stage

BM3D [5] was chosen as the classical preprocessing stage.
BM3D is a non-local image denoising algorithm that is
among the state of the art of non-data driven methods in
terms of noise attenuation and visual quality. This particular
choice was made because BM3D should be able to exploit
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Fig. 3. Redundant Convolutional Encoder-Decoder Network

the patterns and structure of magnitude spectra better than
simpler local denoising methods.

The BM3D algorithm requires an estimate of the noise
standard deviation. Since the time-frequency domain audio
noise cannot be approximated well by a Gaussian, three
estimates were tested to see which would perform best:
o =0.01, 0 = 0.1 and 0 = 1.0, roughly equal to {5, 1 and
10 where 1 is the average pixel value of a noisy magnitude
spectrum.

BM3D was used both as the sole spectrum denoising
method and as a preprocessing stage to apply to samples
before training the R-CED model (Figure 4).

3.3 Training Data

Ideally these experiments would have been conducted using
the same dataset as Park and Lee’s original R-CED work.
However, the TIMIT speech corpus that was used for clean
speech samples is not freely available to the public, so an
alternative source of data had to be found.

Instead, the Microsoft Scalable Noisy Speech Dataset
(MS-SNSD) [6] was used to generate pairs of noisy and clean
speech signals. The dataset consists of a collection of clean
speech of about a sentence in length and a variety of noise
samples commonly found in crowded environments like air
conditioner hum or the babble of background conversation.
Samples are automatically combined to form sets of clean
and noisy speech at any specified SNR. The following
experiments were conducted using approximately 6 hours
of speech at two signal to noise ratios of 0 and -10 dB. 20%
of the generated data was left aside as a test set.

3.4 Evaluation Metrics

Three objective metrics were used for comparison: Signal
to Distortion Ratio (SDR) (Equation 2), Short Time Ob-
jective Intelligibility (STOI) [7], and Perceptual Evaluation
of Speech Quality (PESQ) [8]. All three of these metrics
were used to compare the reconstructed time domain de-
noised audio signal with its target clean counterpart. SDR
is measured in decibels and larger values indicate better
denoising performance. STOI is measured from -1 to 1 with
higher values indicating more intelligible speech. PESQ is
measured from 1 to 5 with higher values indicating higher
quality speech.
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4 EXPERIMENTAL RESULTS

The BM3D denoiser, the R-CED denoiser and the hybrid
denoiser with BM3D preprocessing were evaluated on the
MS-SNSD test set for noisy speech with an SNR of 0 dB
and -10 dB. The BM3D and hybrid denoisers were tested
across a range of three standard deviation estimates. The
two methods involving the R-CED model were trained
from scratch in each case to produce a separate model for
each noise level and, in the case of the hybrid architecture,
a separate model for each of the three BM3D parameter
estimates.

TABLE 1
BMB3D Test Set Performance
0dB SNR Speech -10dB SNR Speech
BM3D o | SDR(dB) | STOI | PESQ || SDR (dB) | STOI | PESQ
0.01 0.13 0.73 1.20 -4.69 0.66 1.14
0.1 0.16 0.73 1.21 -4.69 0.66 1.14
1.0 0.5 0.73 1.22 -4.63 0.66 1.14
TABLE 2
R-CED Test Set Performance
0dB SNR Speech -10dB SNR Speech
SDR (dB) | STOI | PESQ || SDR (dB) | STOI | PESQ
9.55 0.76 1.39 6.21 0.69 1.24
TABLE 3
Hybrid Method Test Set Performance
0dB SNR Speech -10dB SNR Speech
BM3D o | SDR (dB) | STOI | PESQ SDR (dB) | STOI | PESQ
0.01 9.37 0.75 1.37 6.20 0.69 1.24
0.1 9.44 0.75 1.37 6.22 0.68 1.24
1.0 9.53 0.75 1.39 6.25 0.68 1.24

4.1 BM3D Denoiser

Table 1 shows the performance of BM3D as the sole spec-
trum denoising method. The performance is uniformly poor
across both noise levels. The example in Figure 5 demon-
strates how BM3D performs some minor smoothing of
portions of the spectrum most impacted by approximately
white noise, but fails to attenuate the less random undesir-
able parts of the spectrum.

4.2 R-CED Denoiser

Table 2 shows the performance of the R-CED model trained
at the two different noise levels. The CNN spectrum de-
noiser performs considerably better in all metrics when
compared to BM3D. As seen in Figure 6, the network is
able to identify and eliminate structured portions of the
spectrum that are not associated with speech.
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Fig. 4. Hybrid R-CED Speech Denoiser with BM3D Preprocessing

Noisy Spectrogram (-10.0 dB SNR)

Clean Spectrogram

Denoised Spectrogram - BM3D (std=1.0)

Fig. 5. BM3D Denoising Example

Noisy Spectrogram (-10.0 dB SNR)

Clean Spectrogram

Denoised Spectrogram - R-CED

Fig. 6. R-CED Denoising Example

4.3 Hybrid Denoiser

The hybrid denoiser’s performance is outlined in Table 3.
This method performs very similarly to the lone R-CED net-
work at a 0 dB signal to noise ratio and slightly outperforms
the R-CED network at the higher -10 dB SNR noise level.
The example in Figure 7 shows how the R-CED network
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with BM3D preprocessing produces a similar, but slightly
’smoother’ looking denoised spectrum than the R-CED on
its own. For both the hybrid method and the pure BM3D
denoiser, the best performance was observed when the noise
standard deviation estimate o was chosen to be 1.

Noisy Spectrogram (-10.0 dB SNR)

Clean Spectrogram

Denoised Spectrogram - Hybrid (BM3D std=1)

Fig. 7. Hybrid Denoising Example

4.4 Summary

The experimental results for all three methods have been
compiled in Table 4. Only the results for the best BM3D
standard deviation estimate (¢ = 1) are included for the
BM3D and hybrid denoisers. The best performance for each
metric and noise level is highlighted in bold print.

Figures 8 and 9 compare the resulting signal to distortion
ratios at an SNR of 0 and -10 dB respectively and illustrate
how both R-CED based methods perform similarly and
vastly outperform BM3D on its own.

5 DiscUssSION

As one might expect given the non-natural domain of
spectral magnitude images, the fully convolutional R-CED
denoiser handily outperforms the classical BM3D denoising
algorithm. BM3D is able to smooth out portions of noisy
spectra that can be well approximated by additive Gaussian
noise, but the algorithm is incapable of removing noise with



TABLE 4
Experimental Performance Overview

0dB SNR Speech -10dB SNR Speech
Method | SDR (dB) | STOI | PESQ || SDR (dB) | STOI | PESQ
BM3D 0.5 0.73 1.22 -4.63 0.66 1.14
R-CED 9.55 0.76 1.39 6.21 0.69 1.24
Hybrid 9.53 0.75 1.39 6.25 0.68 1.24
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Fig. 8. Signal to Distortion Ratio at 0dB SNR
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Fig. 9. Signal to Distortion Ratio at -10dB SNR

any sort of structure. However, BM3D'’s attenuation of white
noise leads to a slight performance improvement when
used as a preprocessing stage before the R-CED network.
This improvement is only seen at the higher -10 dB SNR
noise level, likely due to the more prominent presence of
approximately white noise, especially in the sparse regions
of the noisy spectrum.

It is important to note that objective speech quality met-
rics such as the three used in this experiment are not perfect
indicators of denoising performance. For instance, the minor
SDR improvement obtained from BM3D preprocessing is
almost imperceptible to the ear. Some speech enhancement
studies also employ subjective metrics to better quantify
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the quality of reconstructed audio. These metrics typically
involve large scale anonymous surveys where listeners score
speech samples on some numerical scale. Due to time con-
straints, the three experimental techniques were evaluated
using only objective metrics, potentially preventing deeper
insights.

Despite this, a small increase in an objective metric like
signal to distortion ratio could lead to noticeable improve-
ments in applications like speech processing even if the
difference in the speech signals was not noticeable to the
human ear. If the proposed hybrid speech enhancement
method were employed as part of a speech recognition
algorithm, the difference in objective signal quality could
heighten a neural network’s ability to classify the speech
correctly.

6 CONCLUSION

In summary, classical image denoisers like BM3D show
promise as an effective preprocessing stage for time-
frequency domain speech enhancement networks. At high
noise levels, the hybrid denoising method with the fully
convolutional R-CED network trained on BM3D output
outperformed an identical R-CED network trained on raw
noisy magnitude spectra. In theory, this could allow a
smaller model with fewer parameters to achieve the same
level of performance a larger network without classical
preprocessing.

However, these improvements are minor - just a 0.4 dB
increase of signal to distortion ratio and nearly no notice-
able improvement to perceptual speech metrics like STOI
and PESQ. In a realistic embedded system, the additional
computational cost of a sophisticated non-local algorithm
like BM3D is likely too great to consider use of a hybrid
method over a purely data driven technique.

This does not necessarily mean that other computation-
ally cheaper classical denoising algorithms cannot provide
the same performance benefits to a spectrum denoising
network. In future work, alternate preprocessing methods
like Wiener filtering could be evaluated, and may demon-
strate the same ability to reduce any approximately white
noise without the relatively extreme computational strain
of BM3D. Additionally, further testing with a larger dataset
and subjective speech quality metrics collected via survey
might lead to more actionable results.
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