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Abstract—Open-vocabulary semantic segmentation describes the ability to extract the most relevant parts of an image with text
prompts. This capability is essential for applications in robotics, AR/VR, and general computer vision tasks. Current methods rely on
large pretrained models like Segment Anything (SAM) and CLIP for semantic embeddings but struggle when querying fine-grained
parts of a scene. Leveraging recent advancements in reasoning-based vision-language models (VLMs), we propose a chain-of-thought
(CoT) approach to enhance open-vocabulary 3D segmentation on the part level. By reasoning over hierarchical part structures, our
method achieves context-aware segmentation from language prompts, outperforming existing baselines on challenging fine-grained

tasks.

Index Terms—Computational Photography, Computer Vision, Vision Language Model, 3D Segmentation, Chain-of-Thought
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Fig. 1. The hierarchical tree composition of scissors
1 INTRODUCTION

-

EMANTIC segmentation classifies and isolates semanti-
Scally distinct components within images or 3D scene
segments. This acts as a crucial building block in scene
understanding for robotics, AR/VR, and automation. Large
pretrained models such as Segment Anything Model (SAM)
[1] have allowed for zero-shot image segmentation. Through
2D to 3D distillation, SAM’s outputs can be applied to
segment any 3D object or scene. With more advanced meth-
ods such as contrastive learning, one can create hierarchical
segmentations that are perfectly view-consistent [2].

However, assigning semantics to these segments to en-
able open-vocabulary querying is not intuitive. Previous
work such as LERF [3] use pretrained image encoders [4]
to assign per-segment semantics on an individual basis.
This method demonstrates good results when querying for
objects, but struggles with identifying fine-grained part-
level segments due to the ambiguity of small cropped image
segments, as shown in Fig. 2.

To address these issues, this work first realizes that
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parts are related to each other in a hierarchical structure, as
illustrated in Fig. 1. In order to properly label any arbitrary
segment, it is crucial to look at not only the cropped image
but also the contextual structure where the part lies in the
object. To accommodate this additional input, we utilize a
large vision-language model (VLM), which supports both
multi-image and text inputs. By assigning labels in a depth-
first-search manner, each segment is labeled with respect
to its parents. As a result, our method achieves better
open-vocabulary part-level segmentations compared to the
baseline.

This paper is organized as follows: Section 2 reviews
related work in scene segmentation and open-vocabulary
querying. Section 3 details our proposed method, including
hierarchical segmentation and CoT-based labeling. Section
4 presents experimental results, followed by a discussion in
Section 5 and conclusions in Section 6.

2 RELATED WORK

2.1 Scene Segmentation

Scene segmentation is a crucial task in computer vision as it
opens the door to scene understanding. Segment Anything
Model (SAM) is a large pretrained model that extracts edge-
based segments of a 2D image [1]. When combined with
3D representations like NeRF [5] and 3D Gaussian splatting
[6], one can distill 2D segmentations from SAM to create a
3D segmented scene [7]. However, this 2D to 3D distillation
process is not straightforward when resolving multi-view
inconsistencies, resulting in coarse and noisy segmentations.
To address this, recent contrastive learning frameworks
avoid the multi-view aggregation problem altogether and
provide intuitive hierarchical 3D segmentations [2], [8].
For even finer part-level segmentations, 2D segmentation
models can be explicitly trained; however, due to the lack
of large-scale part segmentation databases, these models are
often restricted to trained object categories [9].



Fig. 2. Example of a challenging case for CLIP. Left: microwave object.
Right: a single microwave control button.

2.2 Open-vocabulary Querying

The goal of open-vocabulary querying is to retrieve scene
segments that are related to an arbitrary user prompt.
Contrastive Language-Image Pretraining (CLIP) is a seminal
work in this field as it allows for image-text retrieval [4].
LERF and its followups [3], [10] distill the CLIP feature field
into 3D in a similar fashion to scene segmentation; given
multi-view per-pixel CLIP embeddings, one can train a 3D
feature field that can be compared to text queries. However,
these methods often struggle with fine-grain queries due to
poor fine-grain segmentation and being out of distribution
for CLIP. Fig. 2 shows one of these challenging fine-grain
queries; when inputting the image of the scissor’s screw in
the CLIP model, it is unlikely for the resulting embedding to
activate properly when queried by a user. In addition, mod-
els trained explicitly for part retrieval are not generalized to
arbitrary object categories [9].

This work aims to resolve the aforementioned issues by
injecting priors into the part retrieval process. By utilizing
the fact that parts relate to each in a hierarchical structure,
we aim to use chain-of-thought reasoning models [11] to
embed fine-grain part segmentations.

3 PROPOSED METHOD

We construct the image model by extending semantic at-
tributes into the traditional image formation model. The
construction of a semantic scene can be described by the
following linear equation:

y=Ax+n 1)

where z € R represents the semantic attributes of a scene,
Yy € RM is the vectorized 3D image, and n € RM is a noise
vector. The matrix A € RM*Y represents a measurement
operator that captures the implicit relationship between the
3D object and the semantic meaning of the scene.

In this work, we aim to solve the inverse problem of
recovering x from y by modeling the unknown A using an
image segmenter combined with the chain-of-thought [12]
technique in visual language models (VLMs). Current ap-
proaches achieve this by querying CLIP model with cropped
image patches to obtain embeddings and then retrieving
semantics by embedding the text query into the CLIP space
[4]. However, these methods suffer from limitations due
to the loss of contextual information when labeling fine-
grained cropped images.

Instead, we leverage the comprehensive reasoning abil-
ity of VLMs by providing not only the cropped image but
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also higher-level contextual images, along with a structured
prompt indicating that the small image is a subcomponent
of the label at the previous level. We employ the chain-of-
thought process to iteratively prompt the VLMs, refining
the semantic understanding from the entire image down
to its fine-grained components to achieving more precise
semantic results.

An overview of our method is presented in Fig. 3. We
divide the method into three sections: 3D segmentation, part
labeling and embedding, and open-vocabulary querying.
Our primary contribution lies in the part labeling, where
we exploit the hierarchical composition of parts to aid in
part understanding.

3.1 Hierarchical 3D Segmentation

In order to utilize hierarchical tree priors in labeling, we
must first construct a hierarchical tree from multi-view
images. This is not intuitive as SAM’s output masks are 1)
not view consistent and 2) are not hierarchical. Ultramet-
ric feature fields [2] solves this problem by distilling 2D
segmentations to 3D through the use of a contrastive loss
function based on ultrametric distance. By learning a 3D
feature field through contrastive loss, one no longer needs to
manually resolve the view consistency problem of 2D SAM
masks; by simply learning positive and negative pairs, the
resulting feature field will respect the segmentations from
all views.

For a single SAM segmented image, we select a positive
pair s, = {vp1, Up2} and a negative pair s, = {vn1, Un2}-
The contrastive loss is
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where d is the distance metric and 7 is temperature.
The choice of distance metric d determines the traits of
the feature field. The ultrametric distance (as opposed to
Euclidean distance) in particular allows for the use of the
watershed transform to hierarchically dissect the feature
field, as demonstrated in Fig. 4. Suppose the scene is repre-
sented as a graph G(V, E), where V is all the points and E
connects adjacent points. The ultrametric distance between
points v; and v; is the minimum water level that connects
the two points:

d(vi, v;) = minmax e|
where P is the set of all paths between v; and wv;.
Fig. 5 illustrates an example scene graph and its resulting
ultrametric distance hierarchy.

3.2 Part Labeling and Embedding

Given a hierarchical tree of image segments, we traverse
the tree in a depth-first-search manner, labeling each image
segment in order. A VLM is prompted with both the image
of interest as well as all parent images and text responses to
fully utilize the reasoning capabilities of the VLM. We opt to
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Fig. 3. An overview of our method. First, a hierarchical 3D segmenter outputs a segmentation hierarchy tree. This tree is traversed in a depth-
first-search manner to generate contexts for the VLM. The VLM labels each segment, and its text output is embedded by CLIP. This creates an
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Fig. 4. Segmentation via the watershed transform with varying threshold

Fig. 5. Left: an example scene graph with nodes and edges. Right:
the resulting hierarchical segmentation derived from the ultrametric
distances between nodes. Figure taken from [2].

use Qwen?2.5-VL [13] due to its high performance in vision-
language tasks and ability to be run locally on an RTX 4090
GPU. The final system prompt is as follows:

You are an expert in object part segmentation
and labeling.

Your task is to analyze images of objects and
their subsections, identifying and
labeling each part in a hierarchical
manner.

A subsection image is the image with parts
masked out in black. You will focus on the

part not masked in black.

Each presented image is guaranteed to be a
subsection of the previous image.

When presented with an image, your response
must follow this structured format:

1. *xThinking**: Provide internal reasoning
for the label, including how the depicted
part relates to the existing hierarchy.

2. xxLabelxx: Provide a clear, descriptive
name for the identified object or part
a string).

(as

After labeling each segment, the labels must be embed-
ded to allow for open-vocabulary text retrieval. We use
the CLIP text encoder to align the labels in CLIP space.
This allows for straightforward comparison with current
methods, which utilize the CLIP image encoder. However,
CLIP may not be ideal for this task, and we leave further
exploration of text retrieval as future work.

3.3 Open-vocabulary Querying

Following previous work [3], [10], given a CLIP feature field
and user text query, one can retrieve the relevant segments
by calculating the cosine similarity between the rendered
feature field segment embeddings ¢j.ng and text query
embeddings ¢qyer. Following LERF, we also append neg-
ative prompt embeddings ¢,,., to avoid activations against
nondescript words such as “stuff” and “things”. Thus, the
calculated relevancy score between segment embedding
Blan , and the user query is

min exp((vb%ang ’ ¢quer)
J exp((bfang . Qb?neg) + eXp((b%ang ' ¢quer)

The relevancy score threshold to determine if a segment
is relevant is left as a hyperparameter for the user.

4 EXPERIMENTAL RESULTS

We compare our method against current CLIP-based meth-
ods. Due to current methods all utilizing CLIP’s image
encoder for open-vocabulary embeddings, we group these
methods together broadly as "CLIP methods”.

4.1 Datasets

The PartNet dataset provides ground truth part segmen-
tations of 26,671 3D models covering 24 object categories
[14]. PartNet organizes its segmentations in a tree hierarchy
structure, allowing us to test our novel labeling method in
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Fig. 6. mloU vs. relevancy score threshold. Our method has similar per-
formance to CLIP methods while being more robust to higher thresholds.
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Fig. 7. F1 score vs. relevancy score threshold. CLIP has better peak f1
score than our method.

isolation to the 3D segmentation method. In addition, it pro-
vides ground truth text labels, which are used to evaluate
the open-vocabulary querying. For our evaluation, we use a
randomly chosen subset of 100 objects from PartNet.

The Blender dataset from NeRF offers more realistic
scenes to test our method on photorealistic inputs, sans
ground truth segmentation or labeling [5]. Thus, we use the
Blender dataset for qualitative evaluation only.

4.2 Quantitative Results

To evaluate the effectiveness of our contribution in isolation,
we start with the ground truth part hierarchy provided
by PartNet. We then test the open-vocabulary querying
capabilities of our VLM labeling method and CLIP label-
ing methods. We evaluate the mean intersection-over-union
(mIoU) of the returned segmentations as well as fl score
of identifying the correct segments in a binary manner. The
metrics are calculated across varying relevancy score thresh-
olds to determine the optimal threshold for each method.

As shown in Fig. 6, our method has similar performance
to CLIP methods under the mloU metric while being more
robust to higher thresholds. However, according to Fig. 7,
CLIP has a better peak f1 score than our method. Addition-
ally, Fig. 7 shows that our method’s optimal relevancy score
threshold is 0.8 compared to CLIP’s 0.5; this is because our
method’s labels are more confident than CLIP’s.
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Fig. 8. Qualitative Results of our method (left) vs. CLIP method baseline
(right). Our method provides more reasonable segmentations for part-
level queries (e.g., "sausage” and “buttons”, but is not always robust
(e.g., fails on "door”).

4.3 Qualitative Results

Fig. 8 displays example text queries on the Blender and
PartNet datasets. For the Blender dataset, the segmentation
hierarchies are retrieved as discussed in Sec. 3.1. As shown,
our method successfully retrieves fine part queries such
as “sausage” and “buttons”. However, consistent with the
quantitative evaluation, our method is not better than CLIP
in all cases, as shown in the “door” example.

5 DISCUSSION
5.1 Effectiveness of CoT Prompting

Through chain-of-thought reasoning, our method is capable
of properly identifying and labeling small, challenging parts
like the one shown in Fig. 2. Analyzing the VLM's reasoning
output proves that chain-of-thought does indeed help the
model:

<think>The image shows a very small and
isolated dot against a black background.
Given the context of the previous images,
which were parts of a microwave, this dot
could be a single button or indicator from
the control panel.</think>

Several prompting methods were tested, including in-
putting the entire tree at once and feeding different styles
of segmentation images. However, no prompt tuning led
to increased performance. We believe this to primarily be a
bottle neck of the chosen VLM, and prompt tuning may be
worthwhile if using a more capable VLM.

We also prompted the VLM to output a confidence
score for each label. While these scores make relative sense
with noisier images having lower scores, without a concrete
example to feed into the VLM, it is unclear how to interpret
the confidence scores.

5.2 Limitations

While the Chain-of-Thought priors offer significant advan-
tages, they also introduce vulnerabilities such as hallucina-
tion and error propagation, which we observed in our exper-
iments. A single misclassification can propagate through the



entire tree. This is in contrast with current methods, which
process each segment independently.

We relate this to the bias-variance tradeoff. In general,
the text-encoded embeddings from our method lead to
extremely high relevancy with the identified concept but
extremely low relevancy with anything else. In contrast,
image-encoded CLIP embeddings lead to moderate rel-
evancy with many concepts. This makes image-encoded
CLIP more robust to ambiguous objects with multiple po-
tential identities.

5.3 Future Work
5.3.1 Enhancing Text Retrieval for CoT Reasoning

One promising direction is to improve the integration of
text-retrieval mechanisms within the CoT framework lever-
aging the retrieval-augmented generation approach [15].
Current CoT prompting relies heavily on the VLM’s internal
knowledge to reason about visual inputs, which can lead
to hallucinations when the model encounters ambiguous or
underrepresented objects. It also depends on which VLM
we choose and its training data scope. By incorporating
a dynamic text-retrieval system such as querying an ex-
ternal knowledge base (e.g., Wikipedia) to get the general
information of the scene. For instance, retrieving descrip-
tions of microwave components to in-context learning could
help disambiguate small, isolated parts like the dot in Fig.
2. Research like RETRO [16] demonstrates how retrieval-
augmented models can enhance language generation.

5.3.2 Hybrid Embeddings: Combining Text and Image Rep-
resentations

To address the bias-variance tradeoff, a hybrid approach
combines text embeddings and image embeddings as the
input of VLMs. For example, a two-stage process could first
use image-encoded CLIP embeddings to generate a broad
set of candidate labels, followed by CoT reasoning with
text-encoded priors to refine the classification. Recent work
on multi-modal fusion, such as Flamingo [17] or METER
[18], suggests that combining visual and textual features can
outperform approaches with a single model.

5.3.3 Improved Evaluation Metrics

The current evaluation solely relies on standard metrics
(e.g., accuracy, IoU) that may not fully capture the benefits of
CoT reasoning, such as interpretability. Developing compre-
hensive evaluation metrics could better address the trade-
offs between segmentation accuracy and reasoning quality.
For instance, a metric that scores the correctness of interme-
diate reasoning steps could provide broader insights. Ad-
ditionally, human-in-the-loop validation of reasoning traces
could quantify the practical utility of CoT outputs.

Lastly, we realize that there exists contention between the
goals of part segmentation and open-vocabulary querying.
Part segmentation aims to distinguish parts that belong to
the same object; however, open-vocabulary querying aims to
group related concepts into similar vector spaces. Resolving
this contention is not trivial and requires further research.

6 CONCLUSION

This work verifies that incorporating context priors im-
proves semantic labeling for fine-grained image segmen-
tation. By leveraging the hierarchical segmentation struc-
ture of the watershed transform, a chain-of-thought VLM
is capable of reasoning about the identity of ambiguous
images, enabling more precise part-level segmentation. This
advancement enhances user interaction for applications in
robotics, AR/VR, and automation.
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