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ROI-specific k-space Reconstruction
Chiadika Obinwa

Abstract—Magnetic resonance imaging (MRI) acquisition time is fundamentally constrained by the need to collect sufficient k-space
samples, creating a tradeoff between scan duration and image quality. For applications focusing on a specific region of interest (ROI),
conventional uniform k-space sampling is inherently inefficient, as it allocates equal resources to all image regions regardless of their
clinical relevance. We present a novel framework that accelerates MR acquisition by combining a ROI-specific k-space sampling
scheme with compressed sensing to doubly improve acquisition times. Experiments on phantom data with different specified ROIs
demonstrate that our approach outperforms standard reconstruction methods in the undersampled case both quantitatively and
visually. This approach enables substantially accelerated acquisition without significantly compromising quality in the target region,
offering significant advantages for clinical applications where speed and ROI-specific image quality are both needed.

Index Terms—MRI, region of interest, sampling, k-space, compressed sensing, ADMM, total variation regularization
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1 INTRODUCTION

Image acquisition in magnetic resonance imaging (MRI)
is typically an expensive, time-consuming process - as such,
current MRI research focuses on accelerating acquisitions
to provide equivalent application-specific quality with re-
duced scan time. While there exist many methods to re-
duce acquisition times for an entire image, the realm of
optimizing for specific regions of interest (ROIs) or images
with limited regions of support (ROSs) remains relatively
unexplored compared to the global case. Intuitively, one
would not need the entirety of densely sampled k-space to
reconstruct an image in only a specific region, however the
question of which k-space points to select isn’t as clear com-
pared to cases where we only care about certain frequencies
in the image.

In this work, we propose combining ROI-specific k-
space sampling with compressed sensing (CS) principles for
efficient MRI reconstruction. Our approach consists of two
main components: (1) a sequential forward selection (SFS)
algorithm that greedily selects k-space samples to minimize
mean-square error for a given ROI, and (2) reconstruction
using ADMM with TV regularization that effectively pre-
serves image structure within the region of interest, and
additionally allows us to randomly undersample our chosen
k-space points for further acceleration. This approach allows
for potentially massive acceleration in specific clinical sce-
narios.

2 RELATED WORK

2.1 Region of Support K-Space Sampling
When MR images have a limited region of support (ROS), it
is possible to reconstruct the image from a subset of k-space
samples. The authors of (1) introduced an approach for
optimal k-space sampling in MRI for images with a limited
ROS, using SFS to identify the optimal combination of k-
space samples that minimizes noise amplification during
reconstruction.

The SFS algorithm starts with an empty set and sequen-
tially adds the k-space sample that provides the greatest im-
provement in reconstruction quality. However, the standard
SFS algorithm cannot be directly applied when the number
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Fig. 1. Experimental setup: (a) Simulated Shepp-Logan phantom used
in our experiments. (b) Example of a target region of interest (circular
ROI). (c) The Shepp-Logan phantom masked by the target ROI, with
brightness enhanced to show contrast. (d) K-space points optimized
to minimize MSE in the least-squares reconstruction of the masked
phantom, shown after 4x undersampling.

of selected samples is less than the number of unknowns -
Gao and Reeves introduced a modified form of the criterion
that overcomes this limitation, enabling the selection of a
minimum number of k-space samples (equal to the number
of pixels in the ROS) while maintaining exact reconstruction
capability in the absence of noise.

3 PRELIMINARIES

3.1 SFS Signal Model and Selection Criteria
We model the observed k-space samples y as a vector
resulting from a linear transformation of the original spatial-
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domain image x in the presence of additive noise w:

y = Ax+w (1)

where w is zero-mean IID noise and A ∈ Cm×n. Given
the observed signal y, our goal is to reconstruct a good
estimate of x by selecting a limited set of observations that
yield the best possible reconstruction. In our ROI-specific
case, A represents a Fourier transform matrix with columns
removed corresponding to the voxels outside the ROI.

From (2) and and (3), if the noise is zero-mean, i.i.d., and
the reconstruction of x is performed via least squares, the
mean square error (MSE) in the reconstruction is propor-
tional to:

E(A) = tr
(
AHA

)−1
(2)

Our goal, then, is to select rows of A (corresponding to
k-space samples) that minimize the quantity in (2). This
standard criterion, however, is not defined when A has
fewer rows than columns (i.e., when there are fewer k-
space samples than unknowns in the ROS). To address this
limitation, the authors of (1) use a modified criterion based
on the pseudoinverse:

E(A) = tr
(
AHA

)+
(3)

A key computational insight is that this expression can be
reformulated as:

E(A) = tr
(
AHA

)+
=

r∑
i=1

1

σ2
i

= tr
(
AAH

)−1
(4)

where σi are the singular values of A and r = rank(A).
This transformation significantly improves computational
efficiency since m ≪ n during the early stages of the
selection process.

3.2 Sequential Forward Selection Algorithm

The SFS algorithm begins with the modified MSE criterion
in Equation 4 when there are fewer selected samples than
unknowns and then switches to the standard criterion in
Equation 2 once the number of selected samples equals the
number of unknowns. When matrix A is underdetermined,
there are two parts in the error: one due to the loss of
signal components and the other due to noise. The modified
criterion reflects the noise error, providing a useful indicator
of the degree to which the available components suppress
or amplify noise.

For computational efficiency, we implement the recur-
sive formulation proposed in (1) that allows us to efficiently
update the selection metrics as new k-space samples are
chosen. This approach significantly reduces the computa-
tional burden, making it feasible to select optimal k-space
sampling patterns in practical scenarios.

3.3 Compressed Sensing Framework

We formulate the MRI reconstruction problem using com-
pressed sensing principles, where we aim to recover an
image x from undersampled k-space measurements y = Ax,
where A represents the undersampled Fourier encoding
matrix. The reconstruction problem can be posed as:

(a) 4x acceleration, optimized sampling

(b) 8x acceleration, optimized sampling

Fig. 2. Reconstruction results for centered circular ROI at different ac-
celeration factors. Each panel shows direct least-squares reconstruction
(top left), error map for least-squares (top right), ADMM reconstruction
with TV regularization (bottom left), and error map for ADMM reconstruc-
tion (bottom right).

x̂ = argmin
x

1

2
∥Ax− y∥22 + λR(x) (5)

where the first term enforces data consistency with the
acquired measurements, and R(x) is a regularization term
that promotes sparsity in a transform domain, with λ con-
trolling the regularization strength.

3.4 Total Variation Regularization
For our ROI-specific reconstruction, we employ anisotropic
total variation (TV) regularization, which promotes sparsity
in the gradient domain while preserving important struc-
tural features. While oftentimes wavelet sparsity might be
enforced in a compressed sensing scenario, TV regular-
ization can be implemented more easily with arbitrarily-
shaped ROIs. The TV regularization term is defined as:

TV(x) =
∑
i

|(∇xx)i|+ |(∇yx)i| (6)

where ∇x and ∇y represent finite difference operators in
the horizontal and vertical directions, respectively.

3.5 ADMM-Based Reconstruction
To solve the TV-regularized reconstruction problem effi-
ciently, we employ the alternating direction method of
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TABLE 1
Mean Squared Error (MSE) Comparison of Phantom Reconstructions

Mask
Type

K-space
Distribution

Reconstruction
Method

Acceleration Factor
8x 4x 2x

Centered
circular

Optimized
Direct least-squares 0.090551 0.079092 0.051512

ADMM 0.086187 0.073979 0.042529

Gaussian
Direct least-squares 0.064172 0.041066 0.016410

ADMM 0.055514 0.035668 0.016423

Off-center
circular

Optimized
Direct least-squares 0.106115 0.099383 0.081342

ADMM 0.109282 0.093218 0.072694

Gaussian
Direct least-squares 0.094492 0.080551 0.057094

ADMM 0.090292 0.073008 0.056342

Centered
rectangular

Optimized
Direct least-squares 0.089958 0.067144 0.056687

ADMM 0.091675 0.058826 0.048437

Gaussian
Direct least-squares 0.082718 0.057736 0.019545

ADMM 0.080594 0.048930 0.021190

(c) 2x acceleration, optimized sampling

(d) 4x acceleration, Gaussian sampling

Fig. 3. Additional reconstruction results for centered circular ROI. (c)
Results at 2x acceleration with optimized sampling, showing improved
quality; (d) Results at 4x acceleration with Gaussian sampling for com-
parison with optimized sampling at the same acceleration factor.

multipliers (ADMM) (4). We introduce auxiliary variables
to decouple the data consistency and regularization terms,
resulting in the following reformulation:

min
x,v,z

1

2
∥Ax− y∥22 + λ∥z∥1

subject to v = ∇x, z = v
(7)

The augmented Lagrangian for this problem is:

Lρ(x,v, z,u,w) =
1

2
∥Ax− y∥22 + λ∥z∥1

+
ρ

2
∥v −∇x+ u∥22 +

ρ

2
∥z− v +w∥22

(8)

where u and w are scaled dual variables, and ρ > 0
is a penalty parameter. The ADMM algorithm alternately
minimizes Lρ with respect to each primal variable and then
updates the dual variables. Each subproblem has an efficient
solution: the x-update involves solving a linear system, the
v-update has a closed-form solution, and the z-update is a
simple soft-thresholding operation.

Typically the algorithm iterates until a convergence crite-
rion is met, typically based on the primal and dual residuals
falling below specified tolerances, however for the results of
this paper we chose a fixed number of iterates for computa-
tional speed.

3.5.1 Proposed Method
We propose to combine the strengths of both ROI-specific
sampling and compressed sensing to doubly reduce the
number of k-space samples needed to reconstruct an image
- firstly, we use SFS to select ROI-optimal k-space samples,
then randomly select a subset of samples to use for recon-
struction. To reconstruct from these undersampled measure-
ments, we use 20 iterations of ADMM (ρ = 0.5, λ = 0.001)
to find our estimate of the iamge, using anisotropic TV
as our regularizer. As a baseline, we use a naive matrix
approach to construct the least-squares solution, giving us a
guaranteed lower bound on the MSE compared to iterative
methods like our ADMM algorithm.

4 ANALYSIS AND EVALUATION

All experiments were done on a simulated Shepp-Logan
phantom, meant to loosely emulate structures one might see
in an axial scan of the human brain. Results were compared
across different ROI configurations, k-space sampling strate-
gies (ROI-optimized sampling vs. a Gaussian baseline), and
accelerations factors at 2x, 4x, and 8x acceleration. Table
1 provides a comprehensive comparison for MSE values
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(a) Off-center circular ROI, 4x acceleration, Gaussian sampling

(b) Off-center circular ROI, 4x acceleration, optimized
sampling

Fig. 4. Results for off-center circular ROI showing reconstruction perfor-
mance for different sampling patterns. Each panel shows direct least-
squares reconstruction (top left), error map for least-squares (top right),
ADMM reconstruction with TV regularization (bottom left), and error map
for ADMM reconstruction (bottom right).

across all of these configurations, as well as between our
ADMM method and a direct least-squares reconstruction.

Looking at Table 1, we can see that MSE increases with
increasing acceleration factor across all configurations (as
expected), though our ADMM-based reconstruction per-
forms slightly better across most scenarios. Interestingly,
the Gaussian sampling baseline often does better at equal
acceleration factors compared to our optimized sampling
scheme - this is most likely due to the low-frequency bias of
our Gaussian distribution, allowing models to reconstruct
coarse, large-scale image features better compared to the
optimized samples, which do not have the same spectral
bias.

From a qualitative standpoint, more interesting differ-
ences can be seen. For most cases with higher accelera-
tion (> 4x), the reconstructed image seems totally unrec-
ognizable compared to the ground truth (see Figure 2b),
despite the moderate-seeming MSE numbers in Table 1.
Across all scenarios (Figures 2-5), we see that the ADMM-
reconstructed image maintains a similar level of large-scale
structure preservation to the least-squares baseline, with
notably less noise present in the reconstructed image. Ad-
ditionally, computation times for ADMM are much lower
than direct least-squares (as expected), though both are in
the range of seconds for this image scale and as such, may

be clinically feasible.
Lastly, the performance differences between circular and

rectangular ROIs (Figure 5) reveal that ROI geometry may
influence reconstruction quality. Circular ROIs benefit more
from our approach, while rectangular ROIs show a smaller
visual gap between our ADMM-based reconstruction and
our least-squares baseline.

5 CONCLUSION

This paper presents a novel approach to MRI reconstruction
that combines ROI-specific k-space sampling with com-
pressed sensing to significantly accelerate acquisition times.
Our experimental results on a simulated phantom demon-
strate that by strategically selecting k-space samples opti-
mized for a specific region of interest and applying ADMM
with TV regularization, we can achieve substantial accel-
eration factors (up to 4x while maintaining decent image
quality) within the target ROI. Our ADMM-based method
generally outperforms direct least-squares reconstruction
across acceleration factors, particularly in terms of visual
smoothness. Additionally, the geometry of the ROI seems to
have an impact on reconstruction quality, with circular ROIs
benefiting more from our approach than rectangular ones.

Future work could explore the application of this frame-
work to in vivo data, as well as the affects of different ROI
types - in particular, investigating why circular ROIs see

(c) Rectangular ROI, 2x acceleration, Gaussian sampling

(d) Rectangular ROI, 2x acceleration, optimized sampling

Fig. 5. Results for rectangular ROI shape. The rectangular ROI shows
different reconstruction characteristics compared to circular ROIs, with a
smaller visual gap between ADMM-based reconstruction and the least-
squares baseline.
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more of an improvement from the ADMM reconstruction
compared to the square/rectangular ROIs, and extending
this investigation to differently shaped and potentially non-
contiguous ROIs. As well, another avenue to be explored
is the spectral bias of the Gaussian sampling scheme that
seemed to lead to better reconstructions, and biasing the
sampling of our ROI-optimized points to reflect the same
spectral bias to potentially lead to better quality reconstruc-
tions. Optimization of the reconstruction algorithm itself
could be investigated, with the ADMM parameters ρ and
λ being able to be trained on data, given a fixed number
of iterations. Lastly, extending this approach to multi-coil
acquisitions and 3D imaging presents promising directions
for further acceleration in clinical MRI applications.
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