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Abstract

Magnetic Resonance Imaging (MRI) requires data that
is free from motion artifacts to ensure accurate diagnos-
tics and analysis. Parallel imaging techniques such as
Generalized Autocalibrating Partially Parallel Acquisitions
(GRAPPA) and Sensitivity Encoding (SENSE) are widely
used to accelerate image encoding by leveraging an array
of receiver coils to undersample images in k-space. These
techniques improve scantime efficiency, allowing for higher
resolution imaging with less corruption from subject mo-
tion.

While GRAPPA is robust to coil sensitivity miscalibra-
tions, noisy environments, and subject motion, it lacks the
ability to optimize the signal-to-noise-ratio (SNR). SENSE,
on the other hand, is SNR-optimal and has the ability to
incorporate image priors to regularize image reconstruc-
tion, but is highly susceptible to coil sensitivity misestima-
tion and motion artifacts. This study compares the recon-
struction performance of GRAPPA and SENSE under vari-
ous undersampling conditions, evaluating their robustness
to noise and aliasing artifacts.

1. Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive
imaging technique used to obtain high-resolution images of
internal structures. MR images are acquired through the
use of a magnetic field to align protons in the object to be
imaged, a radiofrequency pulse to move protons from align-
ment, and a receiving coil to pick up the signals of the pro-
tons as they realign. This process often results in extended
acquisition times, increasing susceptibility to motion arti-
facts, noise, and patient discomfort [1].

Parallel imaging techniques improve these limitations by
enabling accelerated image acquisition through undersam-
pling in Fourier space. Generalized Autocalibrating Par-
tially Parallel Acquisitions (GRAPPA) and Sensitivity En-
coding (SENSE) are two widely used parallel imaging re-
construction methods.

GRAPPA estimates missing k-space lines by utilizing in-
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formation from nearby acquired lines, making it inherently
robust in noisy or low-signal environments. However, it
does not optimize the signal-to-noise ratio (SNR) or incor-
porate image priors, which could otherwise enhance recon-
struction quality. In contrast, SENSE utilizes coil sensitiv-
ity maps to directly solve for missing spatial information.
SENSE optimizes SNR and allows for the incorporation of
image priors. Despite these advantages, SENSE is more
susceptible to noise amplification and reconstruction arti-
facts, particularly at high acceleration factors or when coil
sensitivity estimations are inaccurate [2].

This project implements both GRAPPA and SENSE and
compares their reconstruction performance of undersam-
pled data. The evaluation focuses on image quality, assess-
ing artifact presence, and peak signal-to-noise ratio (PSNR)
comparisons to quantify reconstruction accuracy.

2. Related Work

Previous research has explored various approaches to
improving MRI reconstruction, particularly by utilizing par-
allel imaging techniques to accelerate acquisition speeds.
One key area of related work is using priors to enhance re-
construction quality in both GRAPPA and SENSE.

With SENSE, several methods have been explored to in-
corporate prior information to improve reconstruction accu-
racy. Regularization techniques, such as total variation (TV)
minimization, Tikhonov, and Bremen integration, have been
applied to suppress noise amplification and improve SNR.
Additionally, advanced reconstruction methods employ ma-
chine learning-based priors, particularly deep learning mod-
els trained on high-quality MRI data. These improvements
better estimate missing frequencies and reduce aliasing ar-
tifacts compared to the GRAPPA reconstruction algorithm
implemented in this project [3].

In GRAPPA, notable work involves incorporating prior
information to improve robustness and reconstruction fi-
delity. Studies have proposed integrating Tikhonov regular-
ization into the GRAPPA reconstruction process, leverag-
ing information from the Autocalibrating Signal (ACS) re-
gion to enhance stability and image quality. This approach
helps to mitigate noise and reduce artifacts that commonly



arise in accelerated acquisitions. Another significant devel-
opment in parallel imaging reconstruction is the Bayesian
framework that combines GRAPPA and SENSE by utiliz-
ing prior distributions derived from k-space data. This prob-
abilistic approach improves missing spatial frequency esti-
mation, effectively reducing aliasing artifacts and enabling
full-field-of-view image reconstruction [4][5].

Recent work has also demonstrated that generative pri-
ors can further refine MRI reconstructions. By enforcing
learned constraints on the reconstructed images, these pri-
ors help mitigate artifacts and improve the overall fidelity
of undersampled k-space data reconstructions. The use of
diffusion models in image reconstruction also improves the
robustness of parallel imaging methods [6].

Beyond GRAPPA and SENSE, another parallel imaging
technique is Iterative Self-Consistent Parallel Imaging Re-
construction (SPIRiT). Unlike GRAPPA, which explicitly
estimates missing k-space lines, and SENSE, which directly
solves for the image domain, SPIRIT enforces consistency
across acquired and estimated k-space data through an iter-
ative process. This method has been found to provide im-
proved image quality and robustness, particularly in high-
acceleration scenarios [7].

3. Method and Theory
3.1. Accelerating k-space acquisition

MRI relies on the acquisition of data in k-space, which
represents the frequency content of the subject’s spatial in-
formation. By nature of the MRI signal, k-space must be
sampled in a sequential manner using precisely controlled
magnetic field gradients and radiofrequency pulses. This
process results in relatively long scan times on the order
of tens of minutes, which compromises patient comfort,
increases susceptibility to motion artifacts, and limits the
feasibility of imaging techniques that capture dynamic real-
time information. For these reasons, developing image re-
construction techniques that recover accurate images from
accelerated k-space acquisitions has become a central re-
search focus.

In this project, we implement reconstruction methods
(Figure 1) designed to produce high-quality images from k-
space acquisitions that have been accelerated via undersam-
pling and received by an array of receiver coils. These coils
have distinct spatial sensitivity profiles that enable the re-
construction algorithms to discern spatial information from
points that overlap in the aliased, undersampled image.

3.2. SENSE reconstruction

Sensitivity encoding reconstruction (SENSE) is a paral-
lel imaging technique that exploits receiver coil spatial sen-
sitivity profiles to reconstruct MRI images from undersam-
pled data.

Let R represent the undersampling factor of the acceler-
ated imaging sequence (i.e. one out of every R samples of
fully-sampled k-space is collected) and let IV represent the
number of receiver coils. When this data is inverse Fourier
transformed into the image domain, R pixels from the true
image alias into a single pixel. We model the measured
pixel value as a linear combination of the R aliased pixels
weighted by the coil sensitivities at each of the aliased pix-
els. For coils indexed by 7 = 1, ..., IV, the signal recorded
by the ith coil is

R
yi = Z Ci(x;)m(x;) + m;

j=1

where C;(x;) is the sensitivity of coil ¢ at pixel x;, m(x;)
is the true image value at pixel x;, and 7); is the noise in the
ith coil’s measurement. In matrix-vector notation, we write
this compactly as

y=Cm+n

where
+ y € C¥ are the aliased coil readings
» C € CN*E s the coil sensitivity matrix

* m € CF are the true pixel values contributing to the
aliased point

« 1 € CV is the measurement noise

We formulate the reconstruction as minimizing the
squared error between the measurements and the forward
model

th = argmin ||Cm — y|[3 = (C"C)~'C"y

Because SENSE reconstruction is formulated as a maxi-
mum likelihood estimation of the underlying image, it is the
SNR-optimal reconstruction method for the accelerated im-
age given that the model assumptions (i.e. Gaussian uncor-
related noise and correct coil sensitivity maps) are correct.
Coil sensitivity maps must be estimated for each patient be-
cause they depend on factors such as patient position and
tissue properties. Mis-estimated coil sensitivities introduce
an error term in the C matrix, which is amplified by the in-
version in the least squares estimation. Thus, while SENSE
is SNR-optimal, it is also sensitive to small errors in the
model formulation.

3.3. GRAPPA reconstruction

Generalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) is a reconstruction technique that enables ac-
celerated MRI by synthesizing missing k-space data. Un-
like the SENSE technique, GRAPPA avoids the need for
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Figure 1: The reconstruction pipeline implemented in this project follows two branches from the input undersampled k-space to the output
reconstructed image. GRAPPA operates in the Fourier domain, synthesizing the missing k-space lines (green) from the undersampled MRI
sequence. SENSE operates in the image domain, using coil sensitivity maps to unalias the undersampled image.

Figure 2: An R = 2 case is shown here with eight coils. The
red point in the accelerated image contains contributions from two
points (blue) in the true image. Each pair of aliased points is
weighted differently in each of the receiver coil channels (shown
surrounding the object). Though only the combined accelerated
image is shown here, there is an accelerated image for each coil,
thus the problem is a linear system with eight equations and two
unknowns. [3]

estimated spatially varying coil sensitivity maps. Instead,
GRAPPA requires a small contiguous autocalibration re-
gion of fully sampled k-space for calibration (Figure 3).
Let M'")_ (k) be the k-space value to be estimated of
a missing sample from coil ¢ (e.g. due to undersampling).

The GRAPPA reconstruction assumes that Mfrfzss(k) can

be estimated as a linear combination of nearby acquired
samples:

N

Z Z w(c,m,n)Mc(k:c +m, ky + n)
c=1 (m,n)eW

o)

miss

(k)

where
e ¢=1,..., N indexes the receiver coils

e W represents a neighborhood of acquired points
around the missing point

* W(e,m,n) are weights estimated from the autocalibra-
tion data

* M. (k) represents the acquired k-space value from coil
catk = (kg, ky)
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Figure 3: The autocalibration region is a small continuous region
of fully sampled k-space in an otherwise undersampled acquisition

In order to determine the weights w., , »), the GRAPPA
algorithm solves a linear system that fits the autocalibration
signal region (ACS) data by relating a neighborhood of k-
space samples to a target point. The system for coil ¢ is
written as

M® — Aw®

where

« M® e CK are the target k-space points in coil 7 cor-
responding to the K points in the ACS

* A € CE*L are the ACS k-space samples that con-
tribute to the target point, where L = N|W| is the to-
tal number of samples that contribute to the weighted
combination.

« wl) € CL represents the weights

The GRAPPA algorithm then solves for the estimated
weights by solving the least squares problem

W = argmin |[Aw® — M®|2 = (ATA)"TAT M)
These weights then form a kernel that is convolved with

the accelerated k-space acquisition to synthesize the miss-
ing data(Figure 4).

4. Analysis, Evaluation, and Comparison to
Other Methods

When comparing GRAPPA and SENSE, it is important
to look at the differences in the reconstruction algorithms.
GRAPPA relies on interpolation weights that are learned
from the fully sampled k-space data. In accelerated imag-
ing, the weights are applied to the undersampled data to
estimate the missing k-space lines. GRAPPA is compati-
ble with, but does not require coil sensitivity maps for the
reconstruction, making it more robust than SENSE, espe-
cially when working with incomplete or incorrect data.

GRAPPA kernel

Undersampled k-space

Figure 4: The undersampled k-space data is convolved with the
estimated weighting kernel to synthesize missing data.

GRAPPA is not inherently SNR-optimal. GRAPPA han-
dles noise and motion artifacts well due to its data-driven
interpolation approach, but it does not leverage the coil sen-
sitivity profiles to optimize SNR. This results in typically
lower SNR values than SENSE, particularly when working
in noisy environments or with higher acceleration factors.

SENSE operates by combining undersampled data from
all coils using their respective sensitivity maps to solve for
the true image. With accurate coil sensitivity maps, SENSE
effectively reduces noise and improve image quality by op-
timally weighting the data from each coil. Any misestima-
tion or calibration errors in the sensitivity maps can intro-
duce significant reconstruction artifacts since this method
depends on accurate sensitivity maps. At higher accelera-
tion factors, SENSE’s SNR performance degrades because
any inaccuracies in the sensitivity maps become more pro-
nounced which amplifys reconstruction errors.

5. Results

A comparison of image reconstructions using both
SENSE and GRAPPA under various acceleration factors is
presented in Figure 5. The Figure illustrates the reconstruc-
tion quality at acceleration factors of 2 and 4 along the ver-
tical direction, which signifies undersampling by a factor of
2 and 4. The reconstructed images are compared through a
qualitative inspection of the presence of artifacts or aliasing,
along with a quantitative comparison of the PSNR values
for each method.

The ground truth image was reconstructed with the sum
of squares method from fully-sampled k-space data. This
method combines data from the coils by taking the square
root of the sum of the squares of the individual coil images.
The ground truth image obtained from this reconstruction
was used in the PSNR calculation for the undersampled re-
constructed images.

At R, = 2, both SENSE and GRAPPA provide reason-
able reconstructions. SENSE produces a PSNR of 35.81



(a) Ground Truth

(b) SENSE, R, =2
PSNR =35.81 dB

(c) SENSE, R, =4
PSNR =15.53 dB

(d) GRAPPA, R, =2
PSNR =33.33 dB

(e) GRAPPA, R, =4
PSNR =24.10 dB

Figure 5: Comparison of reconstructed images. We used a convolution kernel with dimensions 5x2 in both GRAPPA reconstructions.

dB, and provides good image quality with minimal artifacts.
In contrast, GRAPPA reconstructs the image with a PSNR
of 33.33 dB, which is slightly lower than SENSE but pro-
vides a higher quality image due to the lack of visible alias-
ing.

At R, = 4, the difference in performance between
SENSE and GRAPPA is evident. SENSE drops in PSNR
to 15.53 dB, and produces a significantly degraded image.
The reconstructed image has poor contrast and is very dark.
The drop in PSNR is largely due to its vulnerability to noise
amplification at higher acceleration factors, along with the
sensitivity of SENSE to estimations in coil sensitivities. At
R, = 4, GRAPPA produced a PSNR of 24.10 dB, which in-
dicates a more robust reconstruction than SENSE at higher
accelerations. The image has visible aliasing artifacts but is
sharper and brighter than the SENSE R, = 4 reconstructed
image. Although the image quality at ?,, = 4 is reduced for
both methods compared to i, = 2, GRAPPA demonstrates
better resilience to noise and artifact propagation.

These results highlight the trade-offs between the two
methods. SENSE provides high-quality reconstructions
when coil sensitivity maps are accurate, but its performance
degrades at higher acceleration factors. GRAPPA does not
optimize SNR as effectively as SENSE, but it produces
more robust reconstructions across various acceleration fac-
tors and is less susceptible to noise.

6. Discussion

This project explored the strengths and limitations of
both GRAPPA and SENSE for parallel image reconstruc-
tion. While GRAPPA provides robust performance in the
presence of coil miscalibration and subject motion, it lacks
the ability to utilize additional information through image
priors. SENSE provides better SNR optimization and pro-
vides a convenient template for incorporating image priors:

m = arg min [|[Cm — y|[3 + AR(m)

where the R(m) can be designed to penalize deviations
from expected attributes of the underlying image m. How-
ever, SENSE had the downside of image degradation in the
presence of coil misestimations or at high acceleration fac-
tors.

One next step for this project is to incorporate autocali-
bration data as a prior in the GRAPPA reconstruction pro-
cess.

Autocalibration data, which is obtained from a small por-
tion of the fully-sampled k-space, represents the Fourier
coefficients of a low resolution version of the underlying
image. Incorporating this low resolution image as a prior
in teh reconstruction estimate could improve the quality of
the GRAPPA-reconstructed image [9]. Once the weights
w(® = ATM® are calculated, the image reconstruction



step can be represented as a minimization problem:

Mjj = arg min [|ATMGG —w O] 30177 (ML)~ 3
M)
where the first term enforces that the reconstructed k-space
is consistent with the calculated weights and the second
term enforces that the reconstructed k-space data MS{ is
consistent with the low-resolution image m,s produced by
the ACS data.
The use of autocalibration data as a prior can help bridge
the gap between the robustness of GRAPPA and the flexi-

bility of SENSE.
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