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• The straightforward structure and efficient training process of 
diffusion models have made them a popular choice for 
generative modeling.

• In this work, we implemented several diffusion model 
approaches utilizing a pre-trained score predictor for image 
denoising, unconditional image generation, and tackling 
inverse problems, including inpainting and deconvolution. 
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• Diffusion posterior sampling has enabled 
to solve many other linear/ nonlinear 
inverse problems with noise[3].
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