Mapping 3D Gaussian Splatting to a HW Architecture

Siddhant Gupta

Department of Electrical Engineering, Stanford University

Motivation
3DGS is a state of the art method of rendering 3D scenes
(represented as Gaussians) to 2D camera views
As shown in the chart, new accelerators are orders of
magnitude more power efficient than GPUs for 3DGS render

FPS vs. Rendering Power for 3D Gaussian Splatting Processors

. In order to target a
novel accelerator for
3DGS later, this project
aims to explore
quantization and search
for bottlenecks in the

1. Preprocess image (CPU), divide image into tiles and associated gaussians for each tile

Main Idea
Architectural exploration: compute-wise, can we map 3DGS to a CGRA SoC (CPU+CGRA)
Identify bottleneck in algorithm, and experiment with 16 by 16 loop in C++ for it
Simulate performance benefits from parallelism, and SNR at different quantizations

CGRA
From 1b CBs

From 16b CBs

2. For each pixel in tile [16 x 16 pixels] in parallel:

Quantize gaussian, params to [bfloat16, E4M3, E5SM2]
Compute quantized power, alpha, transparency update
Blend gaussians at quantized precision

Convert RGB for the pixel back to full precision float

Configuration Registers

Routing Tracks
Interconnect
Connection Box (CB) gets inputs

To 160 5B To1bsB
Processing Element (PE)

References

[1] Feng, Wang, “A 1.78mJ/Frame 373fps 3D GS Processor...”, ISSCC, 2025

[2] Song, Kim, Park et al., “IRIS: A 8.55 mJ/frame Spatial Computing SoC...”, ISSCC, 2025
[3] Koul, Melchert,Sreedhar, et al., “AHA: An Agile Approach...” , ACM Transactions on
Embedded Computing Systems, Volume 22, Issue 2, 2023

o = . .
,WW" .w“\"'ﬁw s ” R w“*ﬂﬂ renderlng algorlthm LAFUAIASA ALY CGRA SoC has a CPU, which can do preprocessing with global
e ¢ memory, and a 16 by 16 area of 16 bit processing elements [3]
o
\{ rcemar) L)
r N\
(% Preprocessing vs Serial Render)
Related Work Experimental Results
: Preprocessing Time
. Most works prior to ISSCC 2025 focused on improvements for 3DGS Quantized, bfloat1s = Renserna Tme
at an algorithmic level, to optimize it running for CUDA on an NVIDIA Average
GPU ¥ o Playroom Dataset Playroom Dataset Time:
SSIM: 0.8103411 SSIM: 0.7620919 8.38s
. The Shape Aware 3D GS Processor accelerator[1] and IRIS[2] are PSNR : 24.4170532 PSNR : 22.2413616
custom ASIC utilizing HW-SW co-design to achieve very low mw/ LPIPS: 0.4125682 LPIPS: 0.4173917
reprocessing v Pralized Render
Frame, with dedicated units for 3DGS acceleration e
. In this work, | am to conduct some architecture exploration with A
various quantizations and simulating 16x16 parallelism to guide in | Flowers Dataset | Flowers Dataset T-Ve'?ge
all lerating 3DGS in a CGRA-lik hi SSIM: 0.4580899 SSIM : 0.43133744 ime:
potentially accelerating ina -like architecture PSNR: 18.8644238 PSNR : 16.6820946 0.38s
4 J LPIPS: 0.4646910 LPIPS: 0.54300000

Quantization to 8 bit (E4M3 and E5M2) is excluded due to unrecognizable image quality (exp saturation)

Using bfloat16 creates small artifacts, reasonable SNR, that future work can potentially correct with filtering
Limitation: actual time is not helpful, since it’s algorithm simulation on a desktop, not a cycle-accurate simulator
However, timing charts display with 16x16 pixel-level parallelism per tile, the render bottleneck is almost eliminateg

