

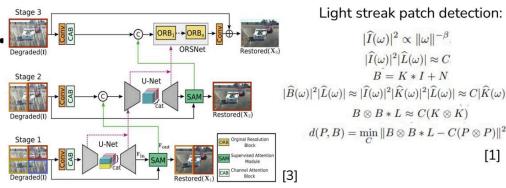
Developing an Image Processing Pipeline for DSLR Astrophotography Using Classical and Deep Learning Methods

Raina Song, Yifei Deng

Department of Electrical Engineering, Stanford University

Motivation

Amateur astrophotography with DSLR cameras faces several challenges that degrade image quality compared to professional setups. Key issues include:


- **Star Trails:** Caused by camera movement or Earth's rotation, leading to streaked stars instead of sharp points.
- **Non-Uniform Backgrounds:** Resulting from light pollution or sensor inconsistencies, reducing contrast and making faint details harder to see.
- **High Noise:** Introduced by dark current and shot noise, obscuring fine astronomical details.

We are developing an automated image processing pipeline, and comparing classical signal processing methods with neural network-based approaches.

Related Work

- A non-linear blur model has been proposed to model light streaks in low-light conditions, but this may fail with large saturated regions [1].
- With non-iterative thinning and Richardson-Lucy algorithm, one can extract deblur kernel and then deblurring it [2].

References

- [1] Hu Z, Cho et al., Deblurring Low-Light Images with Light Streaks, IEEE, 2014
- [2] Su, Shao et al., Richardson-Lucy deblurring for the star scene under a thinning motion path, Satellite Data Compression, Communications, and Processing XI, 2015
- [3] Zamir, Arora et al. Multi-Stage Progressive Image Restoration, CVPR, 2021
- [4] Zamir, Arora et al. Restormer: Efficient Transformer for High-Resolution Image Restoration. CVPR, 2022.

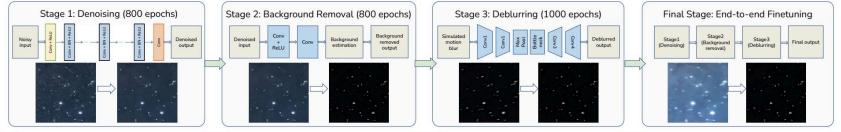
Methods

Classical Method:

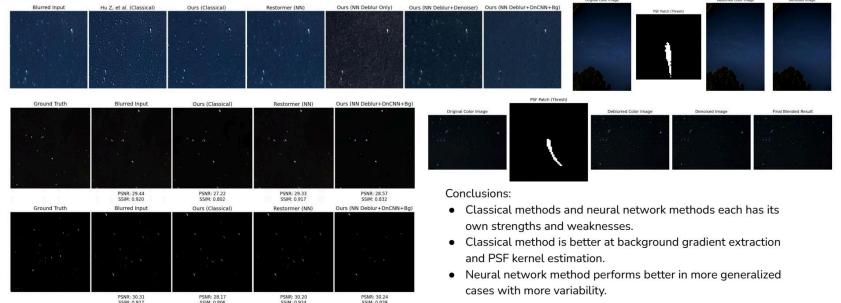
Step 1: Background gradient removal (morphological opening rolling-ball)
 Step 2: PSF motion blur kernel estimation (local patch extraction)
 Step 3: Richardson-Lucy deblurring
 Step 4: Non-local Means denoising
 Step 5: Star Mask + Boosting

Methods

Dataset Pipeline:


Stage 1 Denoising (train/val split (80/20)):
 • Extract 200 random 256x256 patches from raw images (without star trails)
 • Apply non-local means denoising

Stage 2 Background Removal:
 • Use Stage 1 target as input and remove background via Gaussian blur subtraction


Stage 3: Star Trail Simulation:
 • Use Stage 2 target as input
 • Apply random star trails with curvatures

Stage 4: "All-in-One" Degradation
 • Use Stage 2 input as clean reference
 • Apply noise, partial background & star trails

Neural Network Method:

Experimental Results

Conclusions:

- Classical methods and neural network methods each has its own strengths and weaknesses.
- Classical method is better at background gradient extraction and PSF kernel estimation.
- Neural network method performs better in more generalized cases with more variability.