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Diffusion models [1] are a class of generative models that learn to synthesize data

by gradually denoising a noisy inprt. Tn this work. we explore their capabilitcs in

image i and

Specifically, we use diffusion model-based methods for the following tasks:

 Unconditional Tmage Generation from Noise

o Single Step fmage Denoising

We also apply diffusion based methods to inverse problems - specifically Inpainting
and Deconvolution via three methods:

«Score Distillation Editing (SDEdit) [2]

«Score Annealed Langevin Dynamics (ScoreALD) [3]

« Diffusion Posterior Sampling (DPS) [4]

For these tasks, we use a pre-trained diffusion model[4] that is trained on the Flickr-

Faces-HQ Dataset (FFHQ) dataset, and use the variance preserving formulation of
diffusion models{1]

The sequence showing the forward (reverse) diffusion process of generating a sample
by slowly adding (removing) noise.
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Fxamples of faces generated by the pretrained model starting from noise.

Use variaional lower bound
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Single Step Image Denoising

Single Step Denoising Algorithm:

“round Truth (left), Noisy Input (middle), Model Result (right)
for noise levels t= 100, 250 and 500 (top to bottom)

Inverse Problems via SDEdit(2]

Inverse Problem:
y=Az"+w
Tteratively apply the SDEdit Algorithm, to caleulate Go(z) V=T —1,---

SDEdit Algorithm:

8 \/1?: Ty \/I (7 + (1 — ay)s)

21 (@2, 30) + 02 wherew ~ N(0,1)
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Inpainting for t=250 (top), 500 50 (top), 500
(middle) and 750 (bottom) (bottom)

Deconvolution for t:
(middle) and 7

Inverse Problems via ScoreALD|3]

Tnverse Problem:
y=Ar"+w
Sampling the posterior /(z|y) using Langevin Dynamics:

Tu1 ¢ @+ Valogp(aly) + 2mG; - G~ N(0,1)

ScoreALD Algorithm: Initialize 2y ~ A(0,1) and V¢ =0,---
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ScoreALD results for deconvolution (top) and inpainting (bottom); o = 0.05

Inverse Problems via DPS[4]

Inverse Problem:

y=Az"+w
Diffusion Posterior Sampling Algorithm:
; A c
iy e 2y =0V ly — A@)|5 where ¢ = 7= AGoE)IE

where for Vi = N — 1, -+ ,0 we have 2y ~ N,(0, ) and:

—=(zi+(1-a
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DPS results for deconvolution (top) and inpainting (bottom)
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