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Diffusion models have emerged
as powerful generative models
capable of producing high-quality
images. These models work by
iteratively denoising a randomly
sampled noise image to generate
realistic outputs. The ability to
leverage diffusion models extends
beyond generation and into solving
inverse problems such as image
inpainting and deconvolution. This
poster explores how diffusion
models can be used in these
contexts and evaluates different
methods for solving these tasks.
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Methods:
1) Baseline DDPM Sampling: Vanilla iterative
denoising.

)

ScoreALD: Incorporates an annealing strategy for
more stable reconstructions.

4) DPS: Fine-tuned posterior sampling method for
improved consistency.

Dataset: Flickr-Faces-HQ Dataset (FFHQ)

SDEdit: Image modification via noise perturbation.

Methods

Baseline DDPM:

Noising: lteratively
add noise for T
steps

Denoising:
Remove noise for T
steps

ScoreALD:

b Naive assumption:

pU/Ix) = p(yIxo)

SDEdit:

L T ——
oD L o
(Add, wrmvhmw and. ¥ il

Diffusion Posterior Sampling:
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Related Work

1) Generatlve Adversarial Networks
and Di

o lellatlons specific and hard to
generalize for other tasks

2) Variational Autoencoders

o Approach: Learn latent space, interpolate

o Limitations: Less flexible, blurry images
3) Autoregressive Models/PixelCNN
Approach: generate each pixel w/
conditional probabilities
Limitations: slow sampling speed due to
sequential generation

o

Visual results from GAN paper.
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