

Solving Inverse Problems in Imaging with Diffusion Models

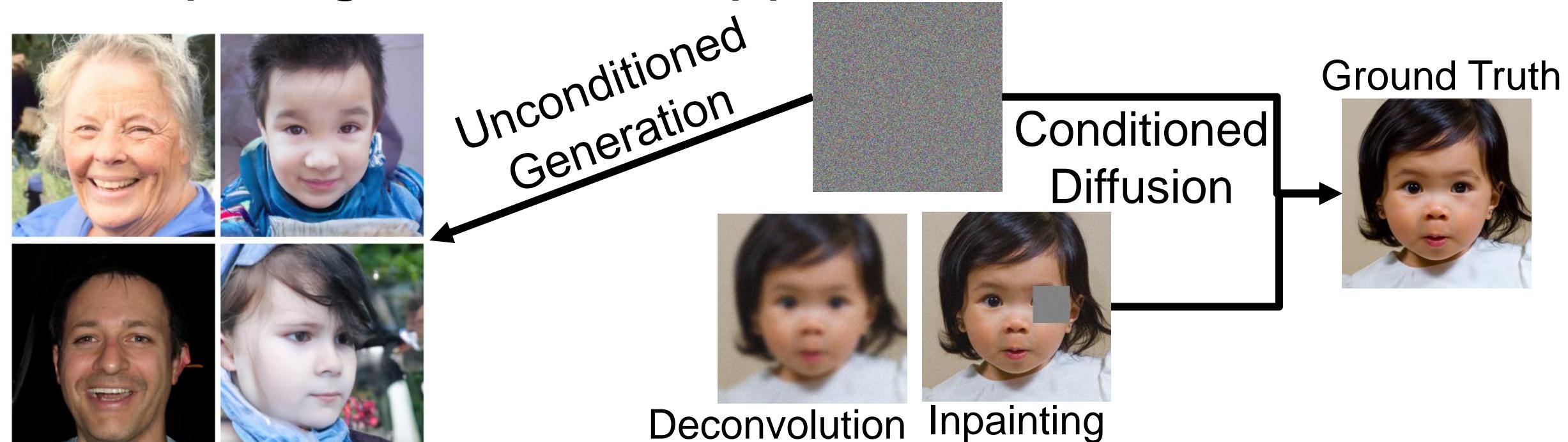
Matthew M. Sato

Stanford University

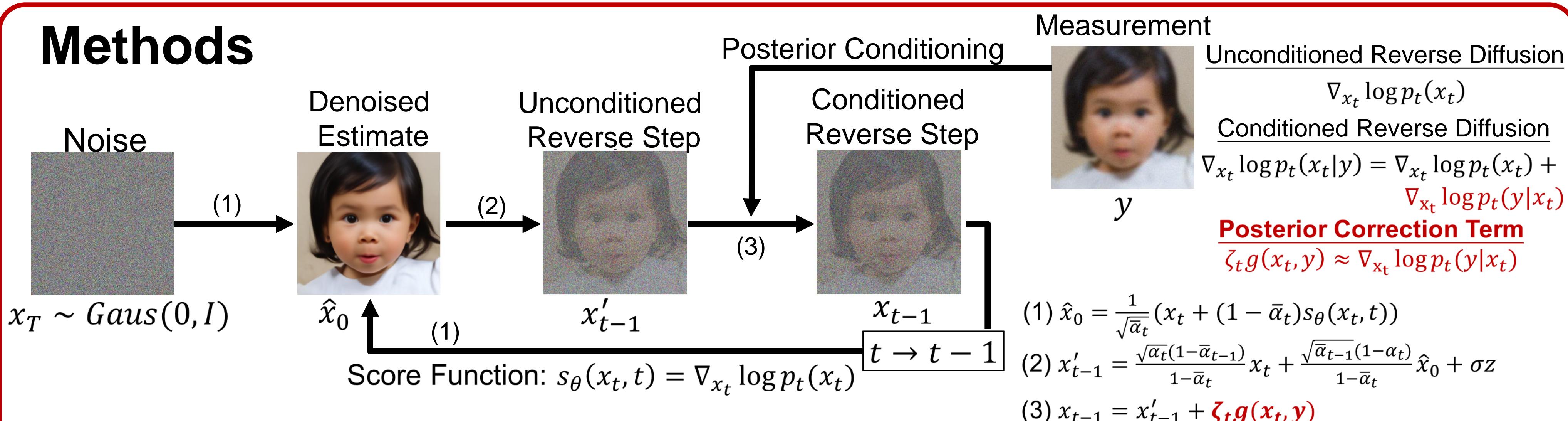
EE 367 Final Project, Winter 2025

Motivation

- Captured images are noisy
- Diffusion models are great at *unconditionally* generating images
- For inverse problems, need to **condition diffusion process on measurement**
- Conditioning is computationally intractable, requiring heuristics/approximations



Methods



SDEdit [3]	ILVR [4]	ScoreALD [5]	DPS [6]
$\zeta_t = 0$ $g(x_t, y) = 0$ $x_T = \sqrt{\bar{\alpha}_T}y + \sqrt{1 - \bar{\alpha}_T}z$ $z \sim \text{Gaus}(0, I)$	$\zeta_t = 1$ $g(x_t, y) = \phi_N(y_{t-1}) - \phi_N(x'_{t-1})$ $\phi_N(\cdot) = \text{Downsample} + \text{Upsample by factor } N$	$\zeta_t = \frac{1}{\sigma^2 + \gamma_t^2}$ $g(x_t, y) = -\nabla_{x_t} \ y - A(x_t)\ _2^2$ $\gamma_t = \text{Annealing Schedule}$	$\zeta_t = \frac{\zeta}{\ y - A(\hat{x}_0)\ _2}$ $g(x_t, y) = -\nabla_{x_t} \ y - A(\hat{x}_0)\ _2^2$

Related Work

- Optimization based methods: ADMM & HQS [1]
 - Convergence can be slow
- Neural network supervised approaches [2]
 - Fails when out of distribution

References

- [1] Boyd et al., "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Foundation and Trends in Machine Learning*, 2001
- [2] Zhang et al., "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising," *IEEE Trans. Imag. Proc.*, 2017.
- [3] Meng et al., "SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations," *ICLR* 2022.
- [4] Choi et al., "ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models," *ICCV* 2021.
- [5] Jalal et al., "Robust Compressed Sensing MRI with Deep Generative Priors," *Neurips* 2021.
- [6] Chung et al., "Diffusion Posterior Sampling for General Noisy Inverse Problems," *ICLR* 2023.

Experimental Results

