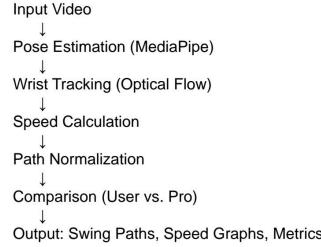


Motion Tracking and Optical Flow for Tennis Swing Analysis

Jeffrey Liu

Affiliations, Stanford University


Motivation

- Analyzing tennis swings is crucial for players to improve their technique, but detecting subtle differences between amateur and professional swings is challenging. Even with slow motion, measuring racket head speed throughout the swing—a key factor in generating maximum spin and ball speed—remains difficult.
- My goal is to solve this problem using optical flow and pose estimation to analyze swing paths and speeds, enabling players to understand and improve their technique.

New Technique

The computational imaging techniques that were utilized were MediaPipe for pose estimation and optical flow for motion tracking, to analyze and compare tennis swings between amateur and professional players. The method provides a detailed breakdown of swing paths and speeds, enabling players to identify areas for improvement. Unlike wearable sensors or basic 2D pose estimation, this approach can use normal speed video swings to measure the swing path and hand speed throughout the whole swing, providing quantitative and visual feedback.

$$\text{speed_px_sec} = \sqrt{(\Delta x)^2 + (\Delta y)^2} \times \text{fps}$$

Path Normalization:

$$(x_{norm}, y_{norm}) = \left(\frac{x}{D_{ref}}, \frac{y}{D_{ref}} \right)$$

where:

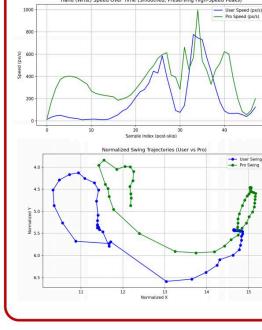
$$D_{ref} = \sqrt{(x_{right} - x_{left})^2 + (y_{right} - y_{left})^2}$$

Related Work

- Wearable Sensors: Wearable sensors, such as accelerometers and gyroscopes, are attached to the player's body or racket to track motion and measure swing metrics.
- Basic 2D Pose Estimation: detecting key body landmarks (e.g., wrists, elbows, shoulders) from video footage.
- Real-time simulation involves creating a virtual representation of the player's motion using computer graphics.

References

[1] J. Kim and E. G. Gee, "Visualizing tennis swing for coaching," 2012 13th International Workshop on Image Analysis for Multimedia Intelligent Services, Doha, Qatar, 2012, pp. 1–4.


[2] C. Wang, "Method for Capturing Tennis Training Action under Machine Vision Images," 2023 International Conference on Computer Science and Application (ICCSA), pp. 1–6.

[3] T. Xu, Z. Li, M. Yuan, Z. Zheng, J. Zheng, and X. Kuan, "Three-Dimensional Spectral-spatial Reconstruction and Feature Analysis of Table Tennis Motion Trajectory," in *2023 13th International Conference on Computer Vision Theory and Applications (CIVIA)*, Guangzhou, China, 2023, pp. 60–66.

[4] J. Liu et al., "Tennis Swing Trajectory Estimation from a Conventional Camera with a Coded Aperture," *ACM Transactions on Graphics*, 2007.

[5] Z. Cao et al., "OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017.

Experimental Results

Metric	User	Pro
Mean Velocity (px/s)	190.8	200.8
Mean Acceleration (px/s/s)	57.93	60.18
Mean Angle (radians)	0.26	0.26
Distance (px)	3.08	3.20
Similarity (%)	187.7	187.92
Difference (User - Pro)	0.48	0.42
Angle (degrees)	19.15	19.15