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Abstract—Image denoising is a fundamental problem in computer vision, and the development of effective and efficient denoising
algorithms is of great importance. In this paper, we investigate the denoising capabilities of instant neural graphics primitives
(instant-ngp) and compare them with the well-established Deep Image Prior approach. We conduct experiments on the BSDS-300
dataset, evaluating the performance of instant-ngp, the Deep Image Prior, and two baseline methods: a multilayer perceptron (MLP)
with frequency encoding and a pure MLP. Our results demonstrate that instant-ngp achieves competitive denoising performance while
offering improved computational efficiency compared to the Deep Image Prior. We also observe that instant-ngp exhibits a higher
sensitivity to noise levels, preserving more fine textures and details in the denoised images. Through a detailed analysis of the
denoising characteristics and hyperparameter exploration, we provide insights into the strengths and limitations of each approach.
Furthermore, we discuss the trade-offs between denoising quality, speed, and the preservation of image details, highlighting the
potential of instant-ngp as a complementary technique to existing denoising methods. Our findings contribute to the understanding of
image priors and their role in denoising tasks, paving the way for the development of more advanced and efficient denoising algorithms.

Index Terms—Image denoising, Image priors, Deep Image Prior, Instant neural graphics primitives (instant-ngp)

INTRODUCTION

1

HE process of image denoising is pivotal in enhancing
Tthe quality of digital images, finding its application
across various domains such as medical imaging, satellite
imagery, and photography. Despite its critical role, achiev-
ing high-quality denoising without compromising on detail
remains a challenging task. The quest for optimal image
denoising methods has led to the exploration of numerous
techniques [1], [2], with a significant focus on deep learning
in recent years.

Traditional denoising methods often rely on handcrafted
priors or assumptions about the underlying image structure.
However, recent advancements in neural rendering, such
as instant Neural Graphics Primitives (instant-ngp), have
shown promising results in representing and reconstructing
images using various types of functions. These functions,
including regular grids, hash grids, and sinusoidal encod-
ing, inherently possess certain priors that can potentially be
exploited for image denoising. On the other hand, the Deep
Image Prior (DIP) approach has demonstrated the effective-
ness of using convolutional neural networks (CNNs) as a
prior for image restoration tasks. This project aims to inves-
tigate and compare the denoising capabilities of instant-ngp
functions with the Deep Image Prior. By understanding the
priors embedded in these different function representations
and their impact on denoising performance, we can gain
insights into the underlying mechanisms of image denoising
and explore the potential of utilizing instant-ngp functions
as an alternative or complementary approach to existing
denoising techniques.

2 RELATED WORK

This project builds upon the seminal work of the Deep Im-
age Prior (DIP) [3], which revolutionized the field of image
restoration by demonstrating that deep neural networks
can inherently act as priors for various image restoration
tasks without requiring explicit training on noisy datasets
(Figure 1). The DIP approach leverages the structure and
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Fig. 1. Pipeline for the deep image prior denoising. A convolutional
neural network is used as a prior for image denoising. The network
is initialized with random weights and optimized to minimize the loss
between the output with respect to random noise as input and the target
noisy image.

regularization properties of convolutional neural networks
to effectively capture the underlying clean image signal
while suppressing noise and artifacts. This groundbreaking
technique has opened up new avenues for unsupervised im-
age restoration and has been widely adopted and extended
in subsequent research [4], [5], [6]. However, despite its sig-
nificant contributions, the Deep Image Prior has certain lim-
itations in terms of computational efficiency and scalability.
The optimization process required to restore each individual
image can be time-consuming, especially for high-resolution
images, which hinders its practical application in real-world
scenarios where fast processing is crucial [7]. Moreover, the
DIP approach relies on optimizing the network parameters
for each image independently, which limits its scalability
when dealing with large datasets or real-time processing
requirements [8]. On the other hand, recent advancements
in neural rendering, such as instant-ngp [9] developed



by Nvidia, have demonstrated remarkable capabilities in
handling gigapixel image tasks. Instant-ngp showcases the
potential of using deep learning techniques as an image
prior for denoising and other image enhancement tasks at a
large scale. By leveraging the power of neural radiance fields
and efficient rendering techniques, instant-ngp achieves im-
pressive results in terms of visual quality and computational
efficiency [10]. However, the application of instant-ngp as
an image prior for a wide range of image restoration tasks
beyond denoising remains largely unexplored. The poten-
tial of combining the strengths of the Deep Image Prior
and instant-ngp to develop a scalable and efficient image
restoration framework is an exciting research direction. By
leveraging the inherent regularization properties of deep
networks and the scalability of neural rendering techniques,
this project aims to push the boundaries of image restoration
and unlock new possibilities for handling high-resolution
and large-scale image datasets.

3 PROPOSED METHOD

This project aims to investigate and compare the denoising
capabilities of instant-ngp functions with the Deep Image
Prior. By understanding the priors embedded in these dif-
ferent function representations and their impact on denois-
ing performance, we can gain insights into the underlying
mechanisms of image denoising and explore the potential of
utilizing instant-ngp functions as an alternative or comple-
mentary approach to existing denoising techniques.

3.1 Dataset Selection

For our experiments, we will utilize the Berkeley Segmen-
tation Dataset (BSDS-300) [11], which is a widely used
benchmark dataset in the field of image processing and
computer vision. The BSDS-300 dataset consists of 300 nat-
ural images carefully selected to cover a diverse range of
content, including landscapes, portraits, animals, and man-
made structures. The images in the dataset are of high
quality and have a resolution of 481x321 pixels.

3.1.1 Dataset Characteristics

The BSDS-300 dataset is known for its rich and challenging
visual content, making it an ideal choice for evaluating im-
age denoising algorithms. The dataset includes images with
varying levels of texture, edges, and smooth regions, which
allows for a comprehensive assessment of the denoising
performance across different image characteristics.

3.1.2 Image Selection

From the BSDS-300 dataset, we will randomly select 15
images to form our test set (Figure 3). This subset will
serve as a representative sample for assessing the denoising
performance of the different methods. The random selection
process ensures an unbiased evaluation and helps to miti-
gate any potential bias introduced by manually choosing
specific images. The selected images will be used consis-
tently across all the denoising methods being compared,
providing a fair and controlled evaluation setup.

3.2 Noise Addition

To simulate noisy images, we will add Gaussian noise with
standard deviation in three levels (15,25,50) to the selected
clean images. The addition of noise will introduce varying
degrees of degradation to the images, allowing us to eval-
uate the denoising performance of the different methods
across different noise levels.

3.3 Denoising Methods

We will implement and compare the following denoising
methods:

e Deep Image Prior (DIP): We will utilize the Deep
Image Prior approach as a benchmark. DIP leverages
the inherent regularization properties of convolu-
tional neural networks to perform denoising without
explicit training on noisy datasets.

o Instant-ngp: We will apply the instant-ngp function
for denoising. Instant-ngp is a neural rendering tech-
nique that has shown promising results in handling
high-resolution images efficiently. We will investi-
gate its potential as an image prior for denoising
tasks.

e MLP with Frequency Encoding: As a baseline, we
will implement a multilayer perceptron (MLP) with
frequency encoding. Frequency encoding has been
shown to improve the performance of MLPs in cap-
turing high-frequency details in images.

o Pure MLP: We will also include a pure MLP without
any specific encoding as another baseline.

3.4 Evaluation Metrics

To evaluate the denoising performance of each method, we
will measure the following metrics:

e Iteration Time: We will record the time taken for
each method to complete a single iteration of the
denoising process. This metric will provide insights
into the computational efficiency of the different
approaches.

o Peak Signal-to-Noise Ratio (PSNR): We will calcu-
late the PSNR between the denoised image and the
original clean image.
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PSNR is a widely used metric for assessing the qual-
ity of denoised images, with higher values indicating
better denoising performance.

« Convergence Iterations: We will track the number
of iterations required for each method to converge
to a stable denoised image. This metric will help us
understand the convergence behavior and the speed
of convergence for each approach.

4 EXPERIMENTAL RESULTS

In this section, we present the results of our experiments
comparing the denoising performance of the Deep Image
Prior, Instant-ngp, MLP with Frequency Encoding, and Pure
MLP. We evaluate these methods based on the metrics
of iteration time, Peak Signal-to-Noise Ratio (PSNR), and
convergence iterations.
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Fig. 2. Model of instant-ngp. In this example, the input image is represented by a mapping function from image coordinates to RGB values. By using
a hash grid encoding for the coordinates and then passing the hidden representations of the encodings to a MLP, the model can generate the RGB
values for the input image by sampling over the grid.

Fig. 3. Example of images from BSDS-300 dataset. These images all
appear in the selected 15 images.

4.1 Selection of Parameters

n our experiments, we aimed to ensure a fair comparison
between the Deep Image Prior and Instant-ngp by using the
recommended settings and parameters from their respective
original papers. For the Deep Image Prior, we adhered to
the model architecture and hyperparameters specified in the
original paper, which have been shown to yield good de-
noising results. For Instant-ngp, we started with the model
settings used in the gigapixel image task, as described in
the original paper. However, to optimize the performance
of Instant-ngp for the denoising task, we explored various
hyperparameters and their impact on denoising quality and
speed. Specifically, we focused on the following hyperpa-
rameters:

e n_levels: The number of levels in the hash map
hierarchy.

o n_features_per_level: The number of features per
level in the hash map.

o log2 hashmap_size: The logarithm base 2 of the
hash map size.

e base_resolution: The base resolution of the hash
map.

o per_level_scale: The scale factor applied at each level
of the hash map hierarchy.

During our exploration, we observed that the n_levels
parameter did not significantly impact the denoising quality.
Therefore, to improve computational efficiency, we reduced
n_levels from 16 to 12. Similarly, we found that the hash
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Fig. 4. PSNR plots for Instant-ngp with different per_level_scale values.

map size, controlled by log2_hashmap_size, had a minimal
effect on the denoising quality. Consequently, we reduced
log2_hashmap_size from 15 to 12, further optimizing the
memory usage and speed of Instant-ngp. We also investi-
gated the impact of the per_level_scale parameter on the
denoising performance. We tested three different values: 1.3,
1.4, and 1.5. Figure 4 shows the training plots comparing the
PSNR values achieved by Instant-ngp with these different
scale values.

From the training plots, we observed that a
per_level_scale of 1.4 yielded slightly better denoising re-
sults compared to 1.3 and 1.5. However, the difference in
PSNR values was marginal, indicating that the choice of
per_level_scale had a relatively minor impact on the overall
denoising quality. Based on these findings, we proceeded
with the following optimized hyperparameters for Instant-
ngp in our experiments:



e n_levels: 12

o n_features_per_level: 2
e log2 hashmap_size: 12
e base_resolution: 8

e per_level scale: 1.4

4.2 Running Speed Comparison

Table 1 shows the running speed comparison of the different
denoising methods in terms of milliseconds per iteration
(ms/it).

From the running speed comparison, we observe that
the Deep Image Prior has the highest iteration time of 49.12
ms/it, indicating that it is computationally more expensive
compared to the other methods. Instant-ngp shows a signif-
icant improvement in running speed, with an iteration time
of 21.23 ms/it, which is less than half of the Deep Image
Prior. The MLP-based methods, both with and without
frequency encoding, exhibit the fastest running speeds, with
iteration times of 7.52 ms/it and 7.47 ms/it, respectively.
These results suggest that the MLP-based methods are com-
putationally more efficient than the Deep Image Prior, given
their smaller network size.

4.3 PSNR and Convergence lterations

Table 2 presents the PSNR and convergence iterations
achieved by each denoising method on the selected 15
images from the BSDS-300 dataset.

From the PSNR results, we observe that the Deep Image
Prior achieves the highest PSNR values across all noise
levels, indicating its superior denoising performance. At a
noise level of 15 (sigma), the Deep Image Prior reaches a
PSNR of 30.79 dB after 3000 iterations. As the noise level
increases to 25 and 50, the PSNR values for the Deep Image
Prior decrease to 29.30 dB and 25.52 dB, respectively, still
maintaining its lead over the other methods. Instant-ngp
shows the second-best PSNR performance, with values of
29.59 dB, 26.82 dB, and 22.48 dB at noise levels of 15,
25, and 50, respectively. However, it is worth noting that
Instant-ngp converges faster than the Deep Image Prior,
requiring fewer iterations to reach its final PSNR values.
For example, at a noise level of 50, Instant-ngp converges
after 380 iterations, while the Deep Image Prior takes 1400
iterations. The MLP with Frequency Encoding demonstrates
consistent PSNR performance across different noise levels,
with values ranging from 24.93 dB to 23.30 dB. Although
its PSNR values are lower than the Deep Image Prior and
Instant-ngp, it still outperforms the pure MLP by a signifi-
cant margin. The pure MLP exhibits the lowest PSNR values
among all the methods, with a consistent PSNR around
11.5 dB regardless of the noise level. This suggests that
the pure MLP struggles to effectively denoise the images
and highlights the importance of incorporating appropriate
priors or encodings to improve denoising performance.

These results demonstrate the trade-off between denois-
ing performance and computational efficiency. The Deep
Image Prior achieves the highest PSNR values but requires
more iterations and computational resources. Instant-ngp
provides a good balance between PSNR performance and
convergence speed, being 30x faster to train until conver-
gence, making it an attractive option for practical applica-
tions.

TABLE 1
Speed comparison of different denoising methods. The time taken for
each method to complete a single iteration is recorded in milliseconds.

Deep Image Instant- Frequency MLP
Prior NGP & MLP
ms/ it 49.12 21.23 7.52 747
TABLE 2

PSNR and convergence comparison of different denoising methods.
The PSNR values are averaged over the selected 15 images from the
BSDS-300 dataset.

noise Deep Im- | Instant- Frequency | MLP

(sigma)| age Prior | NGP & MLP

15 30.79 29.59 24.93 11.55
(it 3000) (it 1000) (it 1000) (it 1000)

o5 29.30 26.82 24.62 11.53
(it 3000) (it 580) (it 1000) (it 1000)

50 25.52 2248 23.30 11.54
(it 1400) (it 380) (it 1000) (it 1000)

4.4 Detailed Comparison

To gain further insights into the denoising characteristics of
the Deep Image Prior and Instant-ngp, we visually examine
and compare their denoised results. Figure 4.4 shows a side-
by-side comparison of the denoised images produced by the
Deep Image Prior and Instant-ngp at different noise levels.

From the visual comparison, we observe that Instant-
ngp tends to preserve more fine textures and details in the
denoised images compared to the Deep Image Prior. The
Deep Image Prior, on the other hand, produces smoother
and more visually pleasing results, especially at higher noise
levels.

At a noise level of 15 (sigma), both the Deep Image
Prior and Instant-ngp effectively remove the noise while
retaining the overall image structure and details. However,
upon closer inspection, we notice that Instant-ngp preserves
slightly more intricate textures, such as the individual leaves
and branches in the image.

As the noise level increases to 25 and 50, the differences
between the two methods become more apparent. The Deep
Image Prior continues to produce smooth and coherent re-
sults, successfully suppressing the noise while maintaining
the main image content. In contrast, Instant-ngp struggles
to completely eliminate the noise, resulting in some residual
noise artifacts in the denoised images. However, Instant-ngp
still manages to retain more of the original textures and fine
details compared to the Deep Image Prior.

The preservation of textures and details by Instant-ngp
can be attributed to its ability to capture high-frequency
information through the use of neural graphics primitives,
which is evident when we compare it with the baseline
models with frequency encoding and pure MLP (Figure
4.4). However, this sensitivity to high-frequency content
also makes Instant-ngp more susceptible to higher levels of
noise. As the noise level increases, the high-frequency noise
components can be mistaken for genuine image details,
leading to the persistence of noise artifacts in the denoised
results.

On the other hand, the Deep Image Prior’s smoothness
prior helps to suppress noise more effectively, especially
at higher noise levels. By prioritizing the overall image
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Fig. 5. PNSR plot and denoising results of the instant-ngp and deep image prior on a sample image from the BSDS-300 dataset. The images are
shown at three different noise levels (15, 25, 50). The PSNR values are plotted against the number of iterations for each method, with the sloid line
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Fig. 6. PNSR plot and denoising results of the MLP with frequency encoding and pure MLP as a baseline.

structure and low-frequency content, the Deep Image Prior
is able to generate visually pleasing and noise-free results,
albeit at the cost of some loss of fine textures and details.

These observations highlight the trade-off between tex-
ture preservation and noise suppression in image denois-
ing. Instant-ngp’s focus on preserving textures and details
makes it more suitable for applications where maintaining
the original image characteristics is crucial, such as in digital

art or texture synthesis. However, its sensitivity to higher
noise levels may limit its performance in scenarios with
severe noise corruption. The Deep Image Prior, with its
emphasis on smoothness and noise suppression, is more
robust to higher noise levels and produces visually appeal-
ing results, making it a preferred choice for general image
denoising tasks.



5 CONCLUSION

In this study, we investigated the denoising capabilities of
instant-ngp functions and compared them with the Deep
Image Prior and other baseline methods. Our experiments
on the BSDS-300 dataset provided valuable insights into the
performance, computational efficiency, and characteristics
of these denoising approaches.

The Deep Image Prior demonstrated the highest PSNR
values across all noise levels, showcasing its effectiveness
in removing noise while preserving the overall image
structure. However, it required more iterations and com-
putational resources to achieve these results. Instant-ngp
emerged as a promising alternative, offering a good balance
between denoising performance and convergence speed.
Although its PSNR values were slightly lower than the Deep
Image Prior, Instant-ngp converged faster and showed a
notable ability to preserve fine textures and details in the
denoised images.

The MLP-based methods, particularly the MLP with
Frequency Encoding, exhibited computational efficiency but
had lower PSNR values compared to the Deep Image Prior
and Instant-ngp. The pure MLP struggled to effectively
denoise the images, highlighting the importance of incorpo-
rating appropriate priors or encodings to improve denoising
performance.

Our detailed analysis revealed that Instant-ngp’s focus
on preserving textures and details made it more sensitive to
higher levels of noise, resulting in the persistence of some
noise artifacts in the denoised results. In contrast, the Deep
Image Prior’s smoothness prior enabled it to suppress noise
more effectively, especially at higher noise levels, at the cost
of some loss of fine details.

The insights gained from this study contribute to the
understanding of image priors and their role in denoising
tasks. The Deep Image Prior remains a powerful and ef-
fective approach for general image denoising, particularly
when visual quality and noise suppression are the primary
concerns. Instant-ngp, with its ability to preserve textures
and details, offers a complementary approach that can be
beneficial in applications where maintaining the original
image characteristics is crucial.

Furthermore, the computational efficiency of the MLP-
based methods, especially the MLP with Frequency En-
coding, highlights the potential for developing fast and
lightweight denoising algorithms. While their denoising
performance may not match that of the Deep Image Prior or
Instant-ngp, they can serve as valuable baselines or be used
in scenarios where computational resources are limited.

Future research directions could explore the integration
of instant-ngp functions with other denoising techniques
to leverage their complementary strengths. Additionally,
investigating the application of instant-ngp functions to
a wider range of image restoration tasks, such as super-
resolution or inpainting, could uncover new possibilities
and further extend their utility.
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