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A Radiant Optical Porosity Model: A New
Perspective on Neural Radiance Fields
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Abstract—We introduce a new volumetric rendering scene
representation based on volume density of materials, and hence
reasons about the porosity of materials. We explicitly derive a
volume rendering equation from this volume density model based
on first principles. Importantly, we show that this rendering
equation can be made identical to that of Neural Radiance
Fields (NeRFs), hence equating the expressivity of this model to
that of NeRFs. Additionally, we show some desirable properties
of this representation. Instead of a typical L2 reconstruction
loss, we formulate regression of the scene parameters as a
Maximum Likelihood Estimation problem to prioritize creation
of surfaces. We show a globally optimal solution exists for a class
of scene parametrizations. We then evaluate several approaches
to regressing these scene parameters.

Index Terms—Volume Rendering, NeRFs

I. INTRODUCTION

In this work, we derive an optical model to address the prob-
lem of novel view synthesis, while shedding insight onto the
recent development that is Neural Radiance Fields (NeRFs).
To perform this task, we seek to model the environment
volumetrically through the association of points in space to
a volume density. In other words, we are asking the question
”How porous is an infinitesimal region around point x” and
addressing the question of whether we are able to render
images from arbitrary poses using this representation. Because
this work is inspired by the gap in understanding surrounding
NeRFs and the optical model it uses, we will spend some
time discussing the underlying optical model of NeRFs. This
discussion is also important to draw parallels and lay out the
notation for this work. We then present our optical model, the
associated rendering equation, and properties of this equation
and how it relates to NeRFs. The goal is to empirically test
the analysis presented here by comparing the performance
(computation time and reconstruction quality) of our model
and to NeRFs. We further provide an ablation on our model
over the typical MSE loss and a well-defined Maximum
Likelihood loss.

II. NEURAL RADIANCE FIELDS

A. Preliminaries

In this section, we introduce the mathematical preliminaries
and notation used to describe NeRFs and our work. For clarity,
we use bold face for vector variables and functions that output
vectors, and non-bold text for scalar variables, functions that
output scalars.

A NeRF is a pair of functions (σ(p), c(p,d)). The density
function, σ : R3 7→ [0, 1], maps a 3D location p = (x, y, z)

to a non-negative scalar value σ that encodes the differential
probability that a point is occupied. The radiance (i.e., RGB
color) function c : R3 × R2 7→ R3 maps a 3D location p =
(x, y, z) and camera view direction d ∈ {x ∈ R3 | ||x|| = 1}
(alternatively parameterized as a 2D vector of angles (θ, ϕ)) to
an emitted RGB color c represented as a vector in R3. Ideally,
regions of space that the representation is confident in being
occupied (i.e. a solid surface) has σ = ∞, while free space is
characterized by σ = 0. For this work, we restrict our focus
on modelling σ, since this is what defines the geometry. This
function can be modelled regardless of the form of c (e.g.
Multi-layer Perceptron, spherical harmonics).

We define C(o,d) ∈ [0, 1]3 as the rendered pixel color
in an image when taking the expected color value from the
NeRF along a ray r(t;o,d) with camera origin o and pixel
orientation d, where r(t) = o+t·d. Specifically, the rendering
equation for a pixel is given by:

C(r;d) =

∫ tf

tn

σ(r(t))c(r(t);d) exp

[
−
∫ t

tn

σ(r(τ)) dτ

]
dt.

(1)
The photometric loss used to regress σ and c is simply the

L2 norm between the rendered pixel C and the true pixel from
the training image C̄. Vectors o and d for every pixel can be
derived from the pose associated with the training image.

However, computing the integrals in Equation 2 is in-
tractable. Instead, we use a piece-wise linear assumption on σ
along sample points of t, while assuming piece-wise constant
c in these intervals. We can then approximate (1) by the sum

C(r;d) =

N−1∑
i=0

c(r(ti);d)Ti

Ti = exp

− i∑
j=0

σ(r(tj))δj

− exp

− i+1∑
j=0

σ(r(tj))δj

 .

(2)

B. Probabilistic Volumetric Model

In this section, we reference prior literature to illustrate the
conventional view that NeRFs are a probabilistic quantity. The
works we reference are [1], [2].

Williams and Max [1] rely on a particle model to derive (2).
Namely, they assume spherical particles occluding a cylinder
drawn out from the pixel area. The number of occluding
particles within a cylinder extending from the pixel to some
distance t away, along the optical ray, is assumed to be a
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Poisson-distributed random variable. The contribution of each
slice of the cylinder to the pixel follows a distribution that
is the derivative of the Poisson distribution. Therefore, the
rendering equation is an expectation of the color, following
the distribution of the ray terminating at a distance t.

However, the assumptions used to derive this equation are
very strong, and does not coincide with the practical expres-
sivity seen in NeRFs. Pixel frustums are typically modelled
as pyramids, and there is a lack of reasoning for treating
the appearance of occluding particles as a Poisson random
variable.

Chen et. al [2] relaxes many of these assumptions while still
deriving the same rendering equation. We only give a brief
summary in this work, but refer readers to [2] for an in-depth
discussion. The work demonstrates that a NeRF density field
can be transformed into the density of a Poisson Point Process
(PPP), and the NeRF color and density fields together give rise
to a “marked” PPP [3], [4]. Here we review the definition and
properties of the Poisson Point Process (PPP), a stochastic
process that models the distribution of a random collection of
points in a continuous space. Much of this discussion is drawn
from [3], to which we refer the reader for a more detailed and
rigorous treatment.

However, [1], [2] both derive a particle-based model of the
environment, which also happens to be probabilistic. We argue
that this is not a very natural interpretation of the physical
world. Although it is perfectly valid to define a probability on
the binary event that something is there or not there, building
downstream tasks based on a binary random variable is non-
trivial since we are no longer dealing with solid geometry.
This also begs the question of why do we take the expectation
for the color, instead of another statistic.

This interpretation is also in conflict with certain materials,
like glass and fog. Typically NeRFs assign low density to
these materials. As humans, we know these materials exist
but are simply optically porous. A practical concern is the
ability to model the NeRF ρ. Computers cannot store solid
surfaces as these regions correspond to ρ = ∞. Although
one can simply use large numbers for ρ with inconsequential
loss of rendering quality, using such large numbers can pose
problems for solution methods, such as gradient descent. This
is primarily because the two learnable parameters ρ and c can
be orders of magnitude different.

Therefore, the purpose of this work is to provide a non-
probabilistic representation of the environment that can po-
tentially make downstream tasks more intuitive to formulate,
resolve the incorrect interpretation associated with special
materials, and address the computational un-modellability of
surfaces. However, since NeRFs have shown themselves to
be so powerful, we would also like to prove the expressivity
of our representation is no less than that of NeRFs by also
proving equivalence in their rendering equations.

III. A POROUS SCENE REPRESENTATION

A key insight inspired by the volume integral formulation
from [2] and by the fact that glass and fog are not optically
dense (i.e. we have less occluding material in a given volume

than the actual volume itself). An analogy can be made here
that molecules of a gas are farther apart than in a solid, hence
more light can pass through. We call this property of a material
optically porous. Specifically, we define porous as the ratio of
occluding volume Vo over the whole volume VT

ϕ =
Vo

VT
. (3)

In the same way [2] defines an integrable field, we can then
define a field based on this property, named the optical porosity
field.

Definition 1 (Optical Porosity Field). Consider a scalar field
Λ that maps subsets B ⊂ Rn of the state space to a bounded
[0, 1] real number that describes the occupied volume within
B. Then, we say the field is a optical porosity field with
intensity ρ : Rn 7→ [0, 1] if:

(i) The amount of occupied volume in B is given by

Λ(B) =

∫
x∈B

ρ(x) dx.

(ii) The fraction of occupancy (or bulk porosity 1 − P) is
given by Λ(B)

V (B) , where V (B) is the volume of B.

In essence, we can think of this field as modelling an
amorphous sponge, where each point in space models the
differential percentage of holes at that point.

A. Optical Porosity Volume Rendering

Due to space considerations, we will only present the results
of the analysis, but the full analysis will be included in the
final report. The rendered pixel color for our model is

C =
∑
i

c(xi)ρ(xi)

i−1∏
j

[1− ρ(xj)] , (4)

where xi are the sample points along the ray associated with
a particular pixel.

Computationally, this formulation is also attractive. Imme-
diately, the field is only between 0 and 1, which matches
the range of colors exactly. This makes gradient descent
solution methods typically more stable. Depending on solution
methods, computers could model surfaces precisely since they
no longer need to store and operate on ∞. Moreover, the
bounded range makes better use of floating-point precision.

We can also compare the runtime of computing (4) with
(2). Our method (4) requires N multiplications. Meanwhile,
evaluating (2) using exponentiation by squaring is O(N log a)
where a is the exponent. Since the density values of NeRFs
can be large, we can see that the complexity of (2) can be
no better than that of (4). Implemented in Pytorch on random
examples, we observe anywhere from 2 to 3 times speed up
using (4).

B. Expressivity by Equivalence

Although we have shown attractive properties of the optical
porosity model, we need to understand the expressivity of such
a model compared to the state-of-the-art (i.e. NeRFs). In fact,
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we can recover (2) immediately from (4) using the one-to-one
transformation (1 − ρ) = exp(−σ), proving no expressivity
gap. We omit the proof here, but will include it in the final
report.

IV. SOLUTIONS TO 3D VOLUMETRIC RECONSTRUCTION

One possible solution to 3D reconstruction is to minimize
the reconstruction loss between the observed pixel color and
the expectation of the colors over the slices (like in [5]).
Although reasonable, this objective may not yield the best
geometry, critical for tasks that interact with the geometry.
Specifically, there is not necessarily an incentive in the L2 re-
construction loss to prioritize the creation of surfaces, possibly
leading to floaters and a fuzzy scene representation.

We also present a maximum log-likelihood loss, derived
from our optical model. The full derivation will be included
in the final report. The optimization (next page, 5) solves the
maximum likelihood problem for our porosity model. Note
that LSE+

0 (a) = log(1 + exp a) is the LogSumExp, c, α are
the model parameters for color and porosity, and s−1 is the
inverse sigmoid. All terms in the bracket are convex if the
model parameters appear affinely in some fixed local area.
This is the case for interpolated fields (e.g. Plenoxels [6]) or
those that use primitives (e.g. Gaussian Splatting [7]). Due
to this, we know that we can find a global optimum through
brute force, permuting over the selection of i and solving that
particular permutation’s unconstrained convex program.

V. GOALS

The primary goals of this project is to (1) perform anal-
ysis of NeRFs and their solution methods, and (2) provide
empirical evidence to support the analysis. Much of (1) has
already been performed, though we can certainly perform
more analysis. For the remainder of the class, we would
like to compare the claims on computational complexity and
training stability by training both a NeRF and our optical

model and comparing the RGB reconstruction (PSNR of test
images) as well as the qualitative geometric reconstruction
on the Gaussian Splatting [7] and NeRFacto [8] framework.
Additionally, we would like to ablate our optical model using
the MSE loss and the MLE loss and compare geometric
reconstruction as well as convergence by using the Plenoxel
[6] framework to garner insight on optimality of either loss.
We provide a timeline below.

• Week 1: Spin up Plenoxel-like trilinear interpolation field
and train using the MSE and MLE losses.

• Week 2: Change the rendering equations of both NeR-
Facto and Gaussian Splatting to (4).

• Final 5 days: Collect results (PSNR, compute time,
training losses, qualitative test renders) and make poster.

• March 13-14: Write report.
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TABLE I: Maximum Likelihood Optimization

max
c,a

∑
r∈D

max
xi

log

exp [
−||C̄− c(xi)||Σc

]
a(xi)

i−1∏
j

1− a(xi)


≡min

c,α

∑
r∈D

min
xi

||s−1(C̄)− c(xi)||Σc
i
+ LSE+

0 (−α(xi)) +

i−1∑
j

(
α(xi) + LSE+

0 (−α(xi))
) (5)


