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1 Motivation

In the field of cryogenic electron microscopy (cryo-EM), the reconstruction of a three-dimensional model from
two-dimensional images represents a pivotal step in molecular structure analysis. This project proposes an innova-
tive approach by employing 3D Gaussian Splatting [1], a technique primarily explored in volumetric rendering, to
improve the cryo-EM reconstruction process. Current methodologies in cryo-EM, while effective, face limitations
in terms of reconstruction accuracy and computational efficiency. Through the application of 3D Gaussian Splat-
ting, we aim to address these challenges by potentially improving the speed and precision of the reconstruction
process.

2 Related Work

The field of cryo-electron microscopy (cryo-EM) has seen remarkable advancements thanks to the application of
machine learning in 3D reconstruction. A notable development is cryoDRGN by Zhong et al. [2, 3], which utilizes
Variational Autoencoders (VAEs) [4] for improved molecular structure reconstruction. In a related attempt,
Zhong et al. [5] also developed Cryofold, which employed Gaussian-based methods for cryo-EM reconstruction.
While promising, Cryofold faced challenges, particularly with experimental validation and limitations in modeling
certain types of heterogeneity, underscoring the need for further innovation in this space.

Alongside this, Mildenhall et al. [6] introduced Neural Radiance Fields (NeRFs), a deep fully-connected neural
network approach for 3D scene reconstruction. NeRFs have shown impressive results in image quality, but they
fall short in terms of training and inference speeds. NeRFs have shown impressive results in image quality, but
they fall short in terms of training and inference speeds. This gap has led to innovative approaches like Plenoxels
by Fridovich-Keil et al. [7] and, more relevant to this project, 3D Gaussian Splatting by Kerbl et al. [1]. Both
methods abandoned the neural network in favor of different methods for representing the latent space. The latter
method leverages anisotropic Gaussians and stands out for its significantly faster inference and training times,
making it a strong candidate for cryo-EM applications.

3 Methodology

We define V : R3 → R as the electrostatic potential of a protein or molecule. Ii are two-dimensional images and
thus represent projections of the potential onto a 2D plane. Ci is the point spread function, the Fourier transform
of which we call the contrast transfer function (CTF). The image formation model is then given as:
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where Φi ∈ SO(3) is a rotation of the coordinates (x, y, t)T and ηi is a noise term [8].
In the Gaussian mixture model used for 3D Gaussian splatting, the potential at a coordinate r = (x, y, z)T is

written as the sum of normal distributions

V (r) =
∑
k

N (r,µk,Σk). (2)

µk defines the mean of a distribution and Σk the covariance matrix. We introduce θ = {µk,Σk} as the set of
means and covariance matrices defining our potential such that V ∈ {Vθ, θ ∈ Θ}.

The problem then becomes a non-convex optimization problem in which we solve for
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argmin
θ

∥Ii − Γ(Vθ, Ci,ϕi)∥22, (3)

where Ii is an image from the training dataset and Γ is renders a 2D image for a given potential Vθ, together
with the CTF Ci and a set of coordinates ϕi. Intuitively, we want to align the rendered or reconstructed images
as closely as possible with the actual images from the training dataset. The CTF will for the first stage of the
project be largely ignored to reduce the complexity of the task.

4 Milestones

1. Projection: The first step is the implementation of the Γ function for rendering or projecting 2D images
for a given potential Vϕ and for given coordinates ϕi.

2. Potential: The next step is the construction of the potential from a set of means and covariance matrices
θ : θ → Vθ.

3. Sanity Check: We then create a synthetic dataset {Ii = Γ(Vθ∗ ,ϕi)} from a given potential Vθ. To check
whether or not the algorithm works, we use Eq. 3 to compute θ and compare θ = θ∗. For simplicity, this
project will not include any work with real cryo-EM data but will rely only on synthetic data for the proof
of concept.

4. Evaluation: As a final step, we want to know how well the algorithm performs. To do this, we initialize
θ0 = θ∗ + ε, where ε is a noise term. We then, again, run the minimization problem from Eq. 3 and check
whether θ = θ∗.

Miscellaneous Tools for data visualization will likely be needed and implemented throughout the project.

Future Work To preserve a reasonable scope for this project, we will only consider scenarios where ϕi

is known. This is called a refinement task. In the future, it is desirable to lift this constraint and also solve
the problem for unknown ϕi which is then called ab initio reconstruction. To support this, one can utilize
different strategies for regularization. Physics-based regularizers leverage knowledge about the underlying
problem. For example, atoms in a molecule cannot be too close or too far apart. In contrast, a data-driven
approach could use a denoiser for regularization.
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