Deep Image Prior for Single-Shot, Blind Denoising and Deconvolution

Akhilesh Balasingam! (avbO3@stanford.edu), Rohan Sanda! (rsanda@stanford.edu)

IDepartment of Electrical Engineering, Stanford University

il Methods

Objective

E Evaluation and Analysis

Goal: Explore non-supervised methods for solving inverse problems, Denoising Deconvolution PSNR
specifically blind denoising and deblurring, where we do not have prior data. :
. Observation . . .
We formulate the problem as: e~r-N(O1) Ouservation » Denoising Deconvolution
Yy = Ax + n PSNR vs Iteration o=0.1 PSNR vs Iteration k=7
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where y is the observations, A is the degradation operator and 7 is -
oy ® . . . o o . . 30 A1
additive Gaussian white noise. For denoising: A = I. For deblurring, A is “
the Toeplitz matrix corresponding to the blur kernel. S f[’ S —
Motivation: While supervised methods explored in class perform well on Rt | A1 — DIP PSNRue
. . DIP PSNR:
these tasks, they (1) require large amounts of labelled data and (2) can " e 15 ] B
struggle to handle complex noise patterns. = = ORISR A, - = ciiiinned
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Iteration

e [Denoising]: PSNR ground truth converges. ADMM-DIP could be run for more iters.

Prior Work

* [Deconvolution]: Significant overfitting present for DIP model. PSNR,,;, continues
_ , _ ~ Used Adam optimizer (optimize f and g simultaneously in deconvolution). to increase VY'th more terations. o
Ulyanov et al. [1] introduce the deep image prior — ~ fo(z; 0) L . * [Deconvolution]: DIP+Deblur PSNR__... plateaus indicating convergence
: : For TV regularization prior: min MSE(fg(2)),y) + Allfo(2)|l7y y
a method for using the parametrized structure of a e dica | ih 0 ot ] ]
. . whnere A IS a learne Yperparameter.
neural network as a natural image prior. |mage Gradient Information
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Ren et al. [2] discuss methods for adapting the deep - 5 ReSU ltS Denmsmg Table 1: Denoising Results
image prior for the deconvolution/deblurring inverse ~ PIP output,i=1 — — P ER—" . 2

Method — - - Y 5-10 g-w-
problem. o PSNR,, | PSNR, | SSIM, | PSNR, | PSNR, [ SSIM,, [ PSNR, | PSNR, | SSIM,, £ F

BM3D 27.24 2065 | 0876 23.59 14.57 0.74 27.38 24.00 0.87 - — oroust
We adapt these methods and benchmark them against supervised DnCNN | 2713 | 2123 | 0856 | 2407 | 1533 | o071 | 2794 | 2432 | 089 — o = e i
algorithms (an upper bound on performance) and other deterministic A0 AN DIP | 2639 | 2066 | 0829 | 2287 | 1607 | 066 | 2848 | 2436 | 090 ey L i

. . . . . T, .\. . 7:.._‘;;‘ = DIP T 2 2 1 2 . 27 2 . 16, 2 6 2 2 24.71 ] 1 Gradient Component Value Gradient Component Value
algorithms. We also explore how adding TV regularization, simpler — LT IV ] 220 | B | 08 300 0 ] 060 %26 02 e o
. . . - T Ei o T - Log probability distribution provides insights into closeness
architectures, and varying levels of noise/blur affects performance. Ground Truth Image Y to natural images which have sparse gradients [4].
(from BSDS300)

- Most models have roughly the same log intensity while
qualitative output varies considerably

- Compute DSSIM for sharpness metric, using Sobel filters to
capture edges, shown right (plots included in report).

Discussion
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. || : Table 2: Deconvolution Results
Deconvolution R £ Key Takeaways:
Method
We perform these experiments using two kernel sizes . . ot . ot : : . . : :
P Ak HSIg W 1285 , R | PRy PO o R R |  DIPis capable of blind denoising and deconvolution for varying
z Wi »n fo(2) k =7 and k = 13. We fix the AGWN at 0 = 0.01. Weiner 2528 | 2564 | 0.78 183 | 2365 | 039 . o
DnCNN 2625 | 2777 | 083 | 2602 | 2711 | 073 noise and blur conditions, though results are usually worse than
- 128 Note that the DIP model does not perform well in the Weiner+DnCNN | 3339 | 2351 | 094 | 3206 | 2842 [ 0.92 supervised baselines.
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. Diagram inspired by [3]
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Encoder Decoder MNIST (used in
deconvolution)

deconvolution task. Priors for the kernel are needed. DIP 22.09 [ 36.16 | 0.71 2032 | 3949 | 0.58
DIP+MLP 26.21 12.15 0.87 23.57 26.63 0.77

* Regularization noise needed to prevent extreme overfitting.

 Adding TV regularization to DIP usually improves performance.

* |nthe future, we seek to explore using DIP for single-shot HDR
image formation, and low-light deblurring and denoising.
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_ i x [ConV, BatchNorm, » = upsample Blurred, Noisy Image Weiner Deconvolution Deconvolution + Denoise Weiner + Denoise DIP DIP + Deconvolution

- xLeakyReLU]
» = downsample H = [1x1 ConV, Sigmoid] o

Model;: We adapt the UNET with skip connections network proposed
by [1]. The model has 2217831 parameters.
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Model,: We implement a simple 2-layer perceptron with Sigmoid [
activation function for the kernel generator, following advice of [2].
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