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Motivation

MRI is a powerful imaging modality capable of resolving high resolution, diagnostically relevant images
from a non-invasive data acquisition procedure. Conventional MRI is performed on high field systems (1-7
Tesla) which cost millions of dollars. Recently there has been a push towards low-field MRI scanners with
hopes of improving accessibility and enabling bed-side scanning [2].
While imaging at lower field strengths is far more cost effective and accessible, the low field regime is
fundamentally limited in SNR. As a consequence of imaging at low SNR, temporal averaging
must be done in order to achieve reasonable image quality, leading to extremely long scan
times. These long scan times require subjects to remain immobile throughout the scan (>30min), which
is infeasible for several populations.

Figure 1. Comparison of a conventional MRI system (left) with the proposed wearable system (right).

Inspired by [1], our proposed solution is to build a comfortable wearable scanner which can
perform continuous imaging during the human sleep cycle. Since the hardware is wearable, the
subject is free to move as the wish, which allows for a comfortable way to perform temporal averaging.
Wearable encoding coils produce non-linear magnetic fields, which requires an entirely new MRI forward
model. We will explore how feasible it is to reconstruct images using a wearable MRI system
in the presence of noise and non-linear encoding fields.

Image Encoding Model

MRI Physics

Suppose that K loop coils are placed on the subject’s head at several known locations, orientations, and
diameters. Each coil is used both for generating encoding magnetic fields and receiving data. If one were
to apply currents I1, ..., IK to each coil, the magnetic field induced by all of these coils B(r) : R3 → R3,
which is varying over spatial coordinates r, is simply a linear combination of the unit field response
Bk(r) : R3 → R3 per coil

B(r) =
K∑

k=1
IkBk(r). (1)

With some simplifying assumptions about a pre-polarizing field, and using Faraday’s law, the received
temporal signal sk(t) for the kth coil can be well modeled as

sk(t) = − ∂

∂t

∫
r
Bk(r) ·

(
RB̂(r)(γ||B(r)||2t)m0(r)

)
dr, (2)

where Rv(θ) ∈ R3×3 describes a rotation about v by angle θ and m0(r) : R3 → R3 is the initial
magnetization that we would like to estimate.

Linear System Formulation
Upon vectorizing the multi-coil received temporal signals sk(t) → b ∈ CM and the desired
magnetization vectors m0(r) → m ∈ CN , we can combine (1) and (2) to arrive at a much simpler linear
system, where the forward model depends on the applied currents I1, · · · , IK :

A(I1, · · · , IK )m = b + n, (3)
where A ∈ CM×N is the discretized forward model described in (2), and n ∼ N (0, σ2I) is Gaussian
noise induced by resistance in the coils and subject. Since we are analyzing the analytic signal in each
coil via IQ demodulation, the received data is complex. A visual representation of A for some fixed set of
currents is shown in Figure 2.

Figure 2. a.) Currents I1, · · · , I8 are applied to their respective coils to generate an imaging magnetic
field (right). b.) The digitized signal induced on each coil is given by a linear function of the image. The
encoding functions are dependent on the imaging magnetic field, and hence they are also dependent on
the currents I1, · · · , I8. The same set of K = 8 coils are used for encoding and receiving.

Image Reconstruction

In order to have sufficient encoding to invert (3), and battle the relatively large levels of Gaussian noise
at low field, we can repeat our imaging experiment with a set of N currents {(I(i)1 , · · · , I(i)K }N

i=1, yielding
N measurement vectors {b(i)}N

i=1, and solve the following regularized linear inverse problem

min
m

||

 A(I(1)
1 , · · · I(1)

K )
...

A(I(N)
1 , · · · I(N)

K )


︸ ︷︷ ︸

A

m −

b(1)
...

b(N)

 ||22 + R(m). (4)

In our experiments, we solve (4) with no regularization (Conjugate Gradient), and several denoising regu-
larizers using ADMM. In all experiments we choose the currents I(i)k ∼ U(−Imax, Imax). The received signal
is acquired over a 2ms period with a sampling time of 4µs. We repeat this over N = 200 measurements.

Results

Figure 3. Different regularized and unregularized reconstructions without any noise

Figure 4. Different regularized and unregularized reconstructions without moderate Gaussian Noise

Iterative reconstructions are performed with (Figure 3) and without (Figure 4) Gaussian noise. Conjugate
Gradient (CG) reconstructions were run for 500 iterations, and an ℓ2 regularization was used to combat
noise amplification. The Total Variation (TV), Wavelet, and Deep Learning based denoising (DnCNN)
priors are enforced using 100 iterations of the ADMM algorithm with optimized hyper-parameters.

Conclusion

In this work we show how a naive strategy of controlling comfortable, non-linear, MRI coils can produce
images with reasonable quality. Various forms of regularization are shown to assist with the problematic
noise experienced in low field systems.
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