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A Modified U-net for Dispersion Compensation
of OCT Simulated Layered Images

Yueming Zhuo, and David Lindell

Abstract—Chromatic dispersion, a common problem that exists in optical coherence tomography (OCT) imaging systems, degrades
the axial resolution of retinal layer structures in an OCT image. This study is to develop a simple OCT simulation with multiple
back-scattering planes in the sample arm and use a modified U-net (mUnet) to enable dispersion compensation of dispersed simulated
data using a set of corresponding ground truth. The effects of dispersion and noises are carefully studied. Axial depth corrections on
training data is needed to enable robust network performance.

Index Terms—Optical Coherence Tomography, Dispersion Compensation, Fully Convolutional Neural Network, U-net
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1 INTRODUCTION

O PTICAL coherence tomography (OCT) is a non-invasive
interferometric imaging technique which uses low-

coherence light to capture micrometer-resolution images of
optical scattering media, e.g., human retina. The core of
OCT can be a simple Michelson interferometer, shown in
Fig.1. Light from low-coherence (wide-band) light source
is split into two separate arms: reference arm towards a
reflective mirror, and sample arm towards a sample, which
contains multiple scattering planes. The lights upon reflec-
tions interferes in the detection path and pass through a
diffraction grating which decomposes the interference spa-
tially in wavelength(λ)-space. To reconstruct OCT images
in the spatial domain (z), the measured interferogram in λ-
space is re-sampled to wavenumber(k)-space linearly, which
are referred as the spectral interference. Taking the Fourier
transform of the spectral interferogram, the spatial layer
structures are reconstructed. Samples are usually disper-
sive mediums, therefore, lights of different frequencies will
travel at different velocity within the sample, which causes
peak broadening. Detailed derivations of basic OCT theory
are shown in Section 3. Section 2 discusses related works on
dispersion compensation of OCT images. Section 4 describes
data preparation procedure. Section 5 shows the proposed
method and section 6 discusses the experimental results.

Fig. 1. Simplest OCT setup [1].
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2 RELATED WORKS

Dispersion compensation has been extensively studied in
the literature. There are hardware-based approaches and
software-based approaches. Hardware-based approach ba-
sically utilizes glasses (e.g., SF11) and place them in the
reference arm to compensate the sample dispersion as well
as the dispersion introduced by the different optics used
within two arms. Hardware-based approaches are not very
flexible as glasses or other compensating optics are made
with fixed dimensions (especially thickness), therefore, it
is hard to compensate the system accurately. Numerical
corrections are extensively explored in the past twenty
years. Fercher et al. [2] used a depth-dependent kernel to
correlate the spectral interference to compensate dispersion.
However, this method relies on the prior knowledge of the
dispersive characteristics of the sample, which could be very
different among different biological tissues. Wojtkowski et
al. [3] applies a phase correction term (up to third order) on
the spectral interference and updates this correction term
to optimize a custom sharpness metric of the measured
OCT image. However, different depths of the biological
tissues require different amount of compensation, therefore,
a single phase mask for all depths may not be very effective.
Hofer et al. [4] used entropy information of the spatial
signal as the sharpness metric. However, sharpness metrics
in general are very susceptible to the prevalent speckle
noise in OCT B-scans. There are a few other techniques:
Lippok et al. [5] introduced fractional Fourier transform;
Pan et al. [6] derived an analytical formula to estimate
the second-order dispersion compensation coefficients in
different depths based on a linear fitting approach.

3 THEORY

This section provides a short summary on the optical the-
ory of spectral-domain optical coherence tomography (SD-
OCT) [7]. Adopting the Michelson interferometer, assume
no reflective or scattering surfaces/planes have frequency-
invariant reflectivities, 50-50 splitting at the beamsplitter,
and denoting the electric field in the reference arm as ER(ω),
the mirror reflectivity as rR, reference arm length as lR, the
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field in the reference arm can be expressed in the angular-
frequency(ω) domain as:

ER(ω) = Eo(ω)rRe
i(2kR(ω)lR−ωt). (1)

Let the sample reflectivity profile be rS(z) and sample
arm length be lS , the field in the sample arm can be written
as:

ES(ω) = Eo(ω)

∫ ∞

−∞
rS(z)e

i(2kS(ω)z−ωt)dz. (2)

Note the factor of 2 in the exponents comes from the
double-pass from the beamsplitter to mirror/sample. Com-
mon path length scaling factor is assumed to be factored
into Eo(ω). In addition, kR and kS are by default functions
of ω and this is the reason that dispersive effects embedded
in the interference. The interference can be found as:

I(ω) = I(kc) (3)

= |ER(kc) + ES(kc)|2 (4)
= IR(kc) + IS(kc) + Iint(kc). (5)

The constant c can be dropped out of the functional
dependency. The first term is referred as the reference back-
ground:

IR(k) = r2RS(k), (6)

where S(k) = |Eo(kc)|2 denotes the source power spectral
density distribution. The second term is referred as the
sample self-interference:

IS(k) = S(k)

∣∣∣∣ ∫ ∞

−∞
rS(z)e

i2knSzdz

∣∣∣∣2. (7)

The last term, which is the most important one, is the
interference term:

Iinit(k) = 2S(k)rR

∫ ∞

−∞
rS(z)cos

(
2k(nSz − nRlR)

)
dz. (8)

For brevity in notation, set lR = 0 and assume rS(z)
is an even function that is symmetrical around the imaged
reference mirror along the sample arm, and the interference
term can be rewritten as:

Iinit(k) = rRS(k)

∫ ∞

−∞
rS(z)e

i2knSzdz. (9)

In practice, reference background and sample self-
interference term are easily removed in k-space by measur-
ing interference while blocking one of the arms. Therefore,
after background subtraction, there will only be the interfer-
ence left. This term already looks like a Fourier transform
itself. With a simple variable transform, i.e., z′ = 2nSz, the
interference can be directly written as a Fourier transform:

Iinit(k) = S(k)
rR
2nS

∫ ∞

−∞
rS

(
z′

2nS

)
eikz

′
dz′ (10)

= S(k)
rR
2nS

F

{
rS

(
z′

2nS

)}
(k). (11)

Above equation shows that, we can reconstruct rS(z) by
just taking the inverse Fourier transform of the spectral in-
terference. Note that the multiplicative S(k) factor behaves
as a convolution in spatial domain, i.e., the spatial distri-
bution of the source convolves with the sample reflectivity

profile and thus will blur the peaks at layer boundaries.
For simulated data, where the spectral shape of the source
is assumed, deconvolution is possible to be implemented.
However, in practice, the source spectral density is not easily
measured or at least not perfectly, therefore, deconvolution
is not usually done for real data.

4 DATA PREPARATION

To simulate OCT, a continuous sample reflectivity profile
is not practical. In fact, in this study, only 2,3,4 discrete
backscattering planes are considered. To eliminate any non-
idealities from linear k-resampling of λ-space, the simu-
lation is based on direct sampling in k-space. The source
central wavelength (λ0) and bandwidth (∆λ) are, 840 and
100 nm, respectively. These values can be converted into the
following k-related quantities:

k0 =
2π

λ0
, (12)

∆k =
2π∆λ

λ2
0

, (13)

σk =
∆k

2ln2
. (14)

Above quantities fully characterize a Gaussian spectral
profile. To initialize the k-vector, the range of k which
depends on the number of σk chosen (or detected by the
spectrometer in a real setup) has to be determined such that
the FWHM in λ-space is about 100 nm. In this study, the
number of σk used is 3. The k-vector and the OCT source
spectrum are initialized as:

1 lambda0 = 840e-9 # center wavelength: 840 nm
2 dlambda = 100e-9 # FWHM: 100 nm
3

4 # Conversion from lambda-space to k-space
5 k0 = 2*np.pi/lambda0
6 dk = 2*np.pi*dlambda / lambda0**2
7 sigma_k = dk/np.sqrt(2*np.log(2))
8 nsigma = 3
9 k = k0 + sigma_k*np.linspace(-nsigma, nsigma, N)

10

11 # OCT source spectrum
12 S_k = np.exp(-(k-k0)**2 / 2 / sigma_k**2)

Listing 1. OCT source initialization

Since the final simulated OCT images will be normal-
ized, the absolute magnitudes of electric fields in the refer-
ence arm and the sample arm are not important. The relative
magnitudes however are important and are determined by
the reflectivity of each backscattering planes. The simulation
program detects how many planes are in the sample, and
sums up all the fields according to equation (4). Since the
reflectivity profiles in this study are simply finite sums
of shifted δ functions, the detector basically detects the
magnitude of a finite sum of complex exponentials. The
interference can be obtained by first setting rS to zero and
run the simulation to obtain the reference background; then
setting rR to zero and run the simulation to obtain the
sample self-interference. The final interference term is ob-
tained by background subtraction in k-space as described in
the previous section. The dispersion comes into the picture
when nS in the electric fields computation is a function of k.
In this study, it is assumed that the sample itself has only one
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unique dispersion profile along k. In real retina, different
layers have different dispersion relations, which adds even
more dispersive and complicated effects into imaging.

Fig. 2. Dispersive effects

Fig.2 shows an OCT image of a 2-layer structure. Disper-
sion not only widened the imaged layers but also shifted
the whole structure. If directly using the above pair of
images as the ground truth and measurement data pair
for neural network training, it imposes a super challenging
task for the neural network, even though the network is
very sophisticated and very dedicated loss functions are
used. In practice, the reference mirror can be moved to
relocate the layered structures within the images. Therefore,
it is not a problem by realigning the shifted measurements
accordingly to match with the depths of the layers in the
ground truth images. This is done using a simple intensity-
based image registration technique: cross-correlation. The
depth-mismatch or the shift between two images is deter-
mined by the lag of the maximum peak in the computed
cross-correlation series. The measurement images are then
circularly shifted in the vertical direction to align with the
ground truth images.

Fig. 3. Shifted corrected measurements

The resolution of the detector is chosen to be 256× 256.
The inverse Fourier transform of a real-valued interfero-
gram is complex and symmetrical, the unique information
is in either half of the reconstructed spatial structure, which
only extends 128 pixels. The detector resolution was initially
chosen to be 1024×1024, however, the resulting OCT image,
size of 512×512, was impossible to be used for training. The
GPU easily ran out of memory or the training time was over
a day or more. The size is also chosen to be a factor 2 for
mainly 2 reasons: faster Fourier transform; skip-connections
in the modified U-net.

5 PROPOSED METHODS

In this study, a deep learning approach is used to do dis-
persion compensation. The mUnet model is adopted from
Shaiban et al. [8].

Fig. 4. Modified U-net architecture

The network is implemented in Pytorch, and optimized
using Adam SGD with simple L2 loss. The dispersion is
added using the following simple model:

1 A = 0.005
2 x = np.linspace(0,np.pi/2,N)
3 n_s = A*np.sin(x) + 1

Listing 2. Dispersion model

The multiplicative factor A which scales the sin function
simply controls the degree of dispersive effects. The training
data and test data contain different numbers of layers (2-
4), different amount of dispersion (0.001-0.005), different
thicknesses (1, 1.5 mm) of samples. Note that the finite thick-
ness also controls the amount of dispersion. Furthermore,
noise level of 0.05 and 0.1 are added to observe network’s
performance. In addition to uniform illumination across the
horizontal (lateral) dimension, a Gaussian profiled illumi-
nation is also used for comparative study (see Fig. 10 for
example). The ordinary Unet architecture was also trained
on the same dataset and compared qualitatively with mUnet
(unfortunately, the quantitative model parameters was lost;
retraining was not possible within the limited time frame).

Note this method of dispersion compensation kills all
phase information of the original complex OCT data, as
the input to this network is the magnitude of the complex
OCT image. The network will modify real pixel values, and
these new pixel values cannot be converted back to complex
values with meaningful phase information. Therefore, for
quantitative phase applications, this method of dispersion
compensation is not appropriate. Using depth-dependent
spectral phase correction term will be better.

6 RESULTS AND DISCUSSIONS

The total training time of the modified U-net, which contains
about 1.9 millions of parameters, is about 14 minutes. The
PSNR summaries of individual test images for both uniform
illumination and Gaussian illumination are shown in Fig. 6.
The baseline PSNRs are computed between ground truth
images and the axial-corrected measurement images with
no dispersion compensation.

There are a few important observations: when adding
noise to the axial-corrected measurements, the baseline
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Fig. 5. PSNR summary. First row: uniform illumination; second row: Gaussian profiled illumination. Circled region: example network worse
performances; this is evident in all cases.

TABLE 1
PSNR summary

- Noiseless σ = 0.05 σ = 0.1

Uniform (baseline) 19.02 18.15 16.33
Uniform (mUnet) 36.51 37.62 38.26

Gaussian (baseline) 26.27 23.00 18.99
Gaussian (mUnet) 42.00 40.35 41.40

PSNRs exhibit much better consistency. This makes sense
as there are different amount of dispersion and different
number of layers present in different OCT images. More
importantly, the network seems to perform more consisent
(lower standard deviation in PSNRs) when the baseline
PSNRs are more consistent, for both cases. In addition, for
the case of uniform illumination, adding more noises into
the training data seems to gain better performance out of the
neural network. The potential reason could be that mUnet
sees the broadened blurry edges as noises based on the
loss function used. Adding higher noises to measurements
introduces more uniform distribution and thus appearing as
an easier job for mUnet.

Furthermore, the red circled region shown in Fig. 6
shows some outlier performances. For these few exceptions,
the measurements exhibit very high dispersion such that the
distance between the planes shortened or became at least
ambiguous for the cross-correlation to work out properly.
An example is shown below:

Fig. 6. Low PSNR example

As one can see that as severe dispersion occurs, the dis-
tance between layers became shorter in this case. However,
the naive axial depth registration can not possibly detects

this, which imposes a great challenge to the neural network,
as it also has to figure out how to shift layers.

Fig. 7 shows an example of a sharpened mUnet result
of a 4-layer structure with uniform illumination. It achieves
a PSNR of 36.53 dB even though the dispersion was quite
severe. Fig.8 shows an example of sharpening a noisy 4-
layer OCT image (σ = 0.05). Even though the last layer
after adding dispersion and additive noise was totally at a
different position, mUnet was able to correct it and show
a high PSNR of 32.61 dB. Fig. 9 shows an example of
noiseless sharpening result in the case of Gaussian pro-
filed illumination. For Gaussian illumination OCT images,
mUnet achieves higher PSNRs overall as compared to uni-
form illumination. The primary reason is that mUnet only
needed to be trained on a considerably smaller region. Fig.
10 shows an noisy case for Gaussian illumination. In the
case of Gaussian illumination, adding noise does not seem
to improve the network performance which is true for the
case of uniform illumination. A potential reason could be
that noises actually blurred the tails on both sides of the
OCT signals to a significant extent (see Fig. 10 for example).

To compare with other models of neural network, the
original Unet architecture was also trained using the sim-
ulated data. The mUnet performs only slightly better than
the ordinary Unet even though it has about twice amount
of training parameters. This makes sense as the simulated
OCT data exhibits perfect symmetrical structure and very
clear distinctive layers. In real OCT data, the images do not
appear to be this nice at all. For example, depending on the
magnification of the optical system, there could easily be
some curved surfaces; there could also be some blood vessel
shadows. For those images, a more sophisticated deep net
may perform better.

7 CONCLUSION AND FUTURE WORKS

This study shows the performance of a modified U-net
(mUnet) deep learning model on simulated OCT dispersed
images. The deep neural network shows a strong recover-
ability for dispersed OCT images. The network can also
denoise if there are additive Gaussian noises in the OCT
image. There is on average of 15 ∼ 20 dB improvements in
using the mUnet for dispersion compensation.

To address the issue of severe dispersion, a second-order
numeric dispersion correction can be first applied to the
measurements. This should reduce the distance changing
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Fig. 7. 4-layer, uniform, noiseless example

Fig. 8. 4-layer, uniform, noise level 0.05 example

Fig. 9. 4-layer, Gaussian, noise level 0.05 example

Fig. 10. 3-layer, Gaussian, noise level 0.1 example
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effect as shown in Fig. 6. Then after axial depth registration,
the network could be trained to output more consistent
results. This could be implemented in the future as an
intermediate step between data preparation and network
training. Some other aspects of the deep net could also
be explored for layered structures in the training data.
For example, rectangular filters might be more suitable for
extracting horizontal layered features.
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