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Evaluation of ADMM-based Poisson denoiser
with different image priors on synthetic and real

experimental images
Xiang Wu

Abstract—Image priors are powerful tools for solving many inverse problems such as imaging denoising. However, many existing
priors have only been tested for Gaussian rather than Poisson noise. Even for those priors that have been tested for Poisson noise,
usually synthetic data is used, which may not faithfully represent how these priors perform on real experimental images. Thus in this
paper, I evaluated Poisson denoisers with different image priors based on an alternating direction method of multipliers (ADMM)
framework for synthetic and real experimental images. Specifically, three different image priors, including L1-norm, total variation norm
and Lysaker-Lundervold-Tai model, were implemented and tested. The results suggested that real experimental Poissonian images
can be effectively denosied using ADMM-based denoisers with image priors, while images with different features prefer different image
priors, as expected. As for the next step, different image priors may be combined into a joint regularization function, or applied in a
sequential manner to further enhance the denoising performance.

Index Terms—Poisson Denoising, ADMM, Image Priors

✦

1 INTRODUCTION

IN many photon-limited imaging systems, such as photon
counting and fluorescence microscopy, Poisson noise is

usually the dominant type of noise in the image. Unlike
other noises such as thermal noise or read noise which
can be greatly reduced via hardware engineering efforts,
Poisson noise results from the quantum nature of light and
thus always exists in images under low light conditions.
Therefore, denoising Poissonian images necessitates post-
processing algorithms, many of which use image priors as
regularizes when solving the inverse problem.

Image priors are powerful tools for image denoising
or solving other inverse problems as they generalize prior
knowledge or models for a certain set of images. In brief,
image priors summarize the like-hood information about
the pixel distribution inside an image, thus allowing one to
pick up the most likely solution among many feasible ones
for the inverse problem. Although many different image
priors have been proposed for image denoising, most of
them have only been evaluated on Gaussian noise. Even for
those existing papers working with Poisson noise, the noise
distribution is usually simulated based on clean natural
images and the denoisers were tested only on the synthetic
data. Thus, it would be interesting to evaluate how the de-
noisers with different image priors/regularizers perform on
real experimental Poissonian images with distinct features.

2 RELATED WORK

A great variety of image priors/regularizers have been
proposed for image denoising. For example, total variation
(TV), which is a very popular prior for natural images,

• X. Wu is with the EE367 Winter 2022 course, Stanford University,
Stanford, CA, 94305.
E-mail: xiangwu@stanford.edu

has been widely used for Gaussian and Poisson denoising
[1,2]. However, TV prior is known to result in stair-casing
artifacts [3], and thus other image priors such as the Lyskaer-
Lundervold-Tai (LLT) model [3], total generalized variation
(TGA) [4], fractional-order total variation [5], and deep
image prior [6] have been used to reduce the stair-casing
artifacts for Gaussian or Poisson denoising. Furthermore, in
other applications such as medical imaging or astronomy
photography, the resulting images usually have different
general features from natural images, and thus should ben-
efit from other types of priors such as the L1-norm which
promotes sparsity [7].

Specifically, in Ref [3], Lysaker et al. proposed the LLT
model and applied the LLT-regularized denosiers for real
magnetic resonance image (MRI) data. However, they as-
sumed Gaussian noise rather than Poisson noise in this
work. Furthermore, In Ref [5], Chowdbhury et al. general-
ized the TV and LLT priors to get fractional-order total vari-
ation prior, and tested their denoiser on Poissonian images.
However, the Poisson noise in the image was simulated and
no experiment images were tested in this work.

3 METHOD

In this paper, Poisson denoisers with different image priors
based on an alternating direction method of multipliers
(ADMM) framework were evaluated on both synthetic and
real experimental images. Specifically, three different image
priors were used as the regularizer, including L1-norm, TV
norm and LLT norm. These three image priors generalize
different set of images, with the L1-norm promoting sparsity
in the image, the TV norm promoting sparsity in the first-
order derivative and the LLT norm promoting sparsity in
the second-order derivative. Furthermore, a diverse set of
synthetic and experimental images with distinct features
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were tested for the denoisers. One should expect the certain
image prior matching the general features of the image
should outperform the other two.

3.1 Construction of ADMM-based Poisson denoiser

The Poisson denoising problem is first tangled by taking
a Bayesian probabilistic perspective [8]. Assuming Poisson
noise is the only source of noise in the image, the image
formation model can be formulated as:

b = P(x)

where x is the ground truth image and b is the noisy
measurement. The probability for a certain measurement at
a particular pixel i can be expressed as:

P (bi|xi) =
(xi)

biexi

bi!

Then the joint probability of all measurements can be
expressed as:

P (b|x) =
M∏
i=1

P (bi|xi) =
M∏
i=1

elog(xi)biexi

bi!

Apply Baye’s rule, one can get the maximum-a-posterior
(MAP) solution as:

xMAP = argminx xT 1− log(x)T b+ λΨ(x)

where Ψ(x) is the regularization term and λ is the relative
weight of the regularization term. The term xT 1− log(x)T b
is the ”data fidelity term” for Poisson noise. This problem
may be difficult to solve directly, but can be solved in an
ADMM framework by constructing the ADMM Augmented
Lagrangian as:

Lρ(x, z, u) =
3∑

i=1

gi(zi) +
ρ

2
∥Kx− z + u∥22 −

ρ

2
∥u∥22

g1(z1) = zT1 1− log(z1)
T b

g2(z2) = IR+
(z2) =

{
0 z ∈ R+

+∞ z ̸∈ R+

g3(z3) = ∥z3∥1

K =

 I
I
D

 , z =

z1
z2
z3

 , u =

u1

u2

u3


where g1(z1) is the data fidelity term, g2(z2) is the indicator
function for the non-negativity constraint, and g3(z3) is the
regularizer. The matrix D takes different forms for different
image priors, which are discussed in details in the next
subsection.

3.1.1 Image priors and regularizers
When using the L1-norm as the image prior, which pro-
motes sparsity in the image, the matrix D is simply the
identity matrix I. When using the TV-norm as the image
prior, which promotes sparsity in the first-order derivative,
the matrix D should be:

D =

(
Dx

Dy

)
Using the duality between the signal processing notation

and linear algebra notation, we have:

Dxx = dx ∗ x, dx =

0 0 0
0 −1 1
0 0 0


Dyx = dy ∗ x, dy =

0 0 0
0 −1 0
0 1 0


When using the LLT-norm as the image prior, which

promotes sparsity in the second-order derivative, the matrix
D should be:

D =

(
Dxx

Dyy

)
where Dx and Dy are:

Dxxx = dxx ∗ x, dxx =

0 0 0
1 −2 1
0 0 0


Dyyx = dyy ∗ x, dyy =

0 1 0
0 −2 0
0 1 0


3.1.2 ADMM update rules
x-update:

x← prox(v) = argminx
ρ

2
∥Kx− v∥22, v = z − u

This is just a least-square problem and can be solved as
follows:

x = (KTK)−1KT v = (I + I +DTD)−1(v1 + v2 +DT v3)

Using convolution theorem, we can avoid inverting large
matrix, but instead doing the calculation in the Fourier
domain based on the image prior as follows:

L1-norm:

x = (v1 + v2 + v3)/3

TV-norm:

x = F−1(
F(v1) + F(v2) + F(dx)∗F(v3) + F(dy)∗F(v4)

1 + 1 + F(dx)∗F(dx) + F(dy)∗F(dy)
)

LLT-norm:

x = F−1(
F(v1) + F(v2) + F(dxx)∗F(v3) + F(dyy)∗F(v4)

1 + 1 + F(dxx)∗F(dxx) + F(dyy)∗F(dyy)
)

(Note that for the TV-norm and LLT-norm, the original v3
was split into v3 and v4 for the ease of math and Python
implementation.)

z1-update:
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z1 ← prox(v) = argminz1 (z1)
T 1− log(z1)

T b+
ρ

2
∥v− z1∥22

(v = x+ u1)

This can be solved by setting the gradient to be zero:

∇(J(z1)) = 1− diag(z1)
−1b+ ρ(z1 − v) = 0

Note that the solution for the individual elements in z1 is
independent from each other, thus this can be solved in an
element-wise manner:

1− bi/(z1)i + ρ((z1)i − vi) = 0

ρ(z1)
2
i + (1− ρvi)(z1)i − bi = 0

This is just a simple quadratic problem with the solution of:

(z1)i = −
1− ρvi

2ρ
+

√
(
1− ρvi

2ρ
)2 +

bi
ρ

Note that only the positive solution is taken due to the non-
negativity constraint.

z2-update:

z2 ← prox(v) = argminz2 IR+
(z2) +

ρ

2
∥v − z2∥22

(v = x+ u2)

As the indicator function goes to infinity whenever z2 < 0,
this is rather straight-forward:

(z2)i =

{
0 vi < 0

vi vi ≥ 0

z3-update:

z3 ← prox(v) = argminz3 λ∥z3∥+
ρ

2
∥v − z3∥22 = Sλ/ρ(v)

(v = Dx+ u3)

Note that for ease of implementation of TV-norm and LLT-
norm in Python, this element-wise soft thresholding z3
update was split into two parts corresponding to the two
matrix components of the block matrix D.

u-update:

z3 ← u+Kx− z

3.2 Data preparation and collection
Three sets of synthetic images and four sets of experimental
images were used in this project. For the synthetic images,
the original clean image was first normalized against its
possible maximum value (e.g. 255 for an 8-bit image), and
then a noisy Poissonian image was simulated by assuming
the peak intensity in the image is 5.

As for the experimental images, an electron-multiplying
charge-coupled device (EMCCD) was used for data collec-
tion. The sensor chip of the EMCCD camera was deep-
cooled to -70 °C to eliminate most of the thermal noise and
read noise, leaving the Poisson noise the dominate noise in
the images. For the noisy Poissonian image, the illumination
condition was set to be very weak, and the exposure time

of the EMCCD camera was set to be 10 ms. Afterwards,
another image with 10-s exposure time was taken under
the same lighting condition, and was used as the ”ground-
truth” image. Specifically, the following sets of experimental
images were collected: 1) Natural scenes of objects; 2) Micro-
scopic image of United States Air Force (USAF) target in the
transmission mode. 3) Microscopic image of microparticles
in the dark-field mode. The microscopic images for 2) and
3) were acquired on a Leica DM 2700M microscope.

4 ANALYSIS AND EVALUATION

The Poissonian synthetic or experimental images were used
as the input for the ADMM-based Poisson denosiers with
three different images priors. The output images were then
compared with the ground-truth image both qualitatively
and quantitatively. On one hand, the denoised images based
on different images priors were visually compared with the
noisy images and the ground-truth images for evaluation.
On the other hand, the peak signal-to-noise-ratio (PSNR)
values between the denoised images and the ground-truth
images were computed to quantitatively evaluate the de-
noiser performance on different types of images. The PSNR
value was calculated using the mean squared error (MSE)
as follows:

MSE =
1

mn

m∑
i=1

n∑
i=1

[Igt(i, j)− Ioutput(i,j)]
2

PSNR = 10 log10(
max(Igt)

2

MSE
)

where Igt is the ground-truth image, Ioutput is the denoised
image, and i and j represent the column and row index of
the image, respectively.

Furthermore, I also evaluated how fast each denoiser
converge by calculating the PSNR values as a function of
iteration number. Additionally, two parameters, λ (relative
weight of the image prior) and ρ (relative weight of the
ADMM penalty term), were manually tuned for each image
prior on each set of synthetic and experimental image so that
the PSNR value of the denoised image sits near the local (if
not global) maxima in the parameter space. The iteration
number was fixed at 75 for all images and denoisers.

5 EXPERIMENTAL RESULTS

5.1 Evaluation on synthetic data
The three sets of synthetic images, including the original
clean image, the simulated Poission image, and three de-
noised images using different image priors are shown in
Fig. 1 below. These denoised results for simulated Poisson
noise revealed several key findings:

First, the denoised images using L1-norm as the image
prior (Fig. 1, the third column) performed the worst among
all three priors, as evidenced by the incremental improve-
ment in the image qualities and PSNR values for all three
synthetic data sets. Specifically, the L1-norm regularized
images just look like another Poissonian image with slightly
higher photon counts. This actually makes sense, since none
of these three synthetic images is sparse, thus violating the
assumption behind the L1-norm.
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Fig. 1. Evaluation of ADMM-based Poisson denoisers on different synthetic images, including birds (a), interference pattern (b) and USAF targets
(c). The Poisson noise was simulated on the normalized clean image by assuming a peak intensity of 5. The images from left to right are: the
original clean image (the ground-truth image), the synthetic Poissonian image, the denoised image with L1-norm, the denoised image with TV norm
and the denoised image using LLT norm. The insets with red boxes on the bottom right of each image show the zoom-in view at specific locations.
The PSNR values for the noisy and denoised images with respect to the ground-truth images are labeled on the image title or in the right top corner
of the image. The last column shows PSNR values of the denoised image as a function of iteration number for all three image priors (L1-norm: blue;
TV norm: orange; LLT norm: green).

Second, both the TV norm and the LLT norm regularize
the images relatively well, resulting in denoised images
quite similar to the ground-truth images visually (Fig. 1, the
fourth and fifth columns). The PSNR values also confirm
the substantial improvement in the imaging quality after
denoising with TV or LLT priors. This confirms the utilities
of TV norm and LLT norm as regularizers for Poisson
denosing problem.

Third, the TV norm and LLT norm introduce different
image artifacts. This can be clearly seen in the birds image
(Fig. 1a, the fourth and fifth columns), where the TV-
denoised image shows obvious staircasing artifact in the
face of the bird. This staircasing artifact from TV norm
has been reported previously [3], and the LLT norm was
proposed to address this issue. Indeed, the LLT-denoised
image does not show any staircasing artifact and seems to
reconstructs the strips and the eye on the bird face better.
However, the LLT norm introduces speckle patterns, which
are seen as blurry black dots.

Fourth, images with different features prefer different
image priors. The birds image (Fig. 1a), which is a rep-
resentative natural scene, seems to have no preference for
TV or LLT prior. This is also shown by the almost identical
PSNR values as a function of iteration numbers for these two
priors. The interference pattern image (Fig. 1b) however, has
very strong preference for LLT prior over TV prior, as evi-
denced by the much better visual image quality after denois-
ing and also the much higher PSNR values for LLT norm.

This result is expected, since there is always gradual change
of intensity for this interference pattern, which does not fit
the piece-wise constant assumption of the TV norm very
well. As a result, the denoised image based on TV norm has
a quite large area with constant intensity at the interference
peak. The LLT norm however, promotes linear variation of
the intensity, and thus reconstructs the interference pattern
much better. In contrast, the USAF synthetic image, which
can be considered as an ideal case with only piece-wise
constant components, prefers TV norm over LLT norm. The
denoised USAF target image based on TV norm is almost
identical to the ground-truth image visually, while the one
based on LLT norm has some speckle artifacts that degrades
the image quality. Furthermore, it is also interesting to see
that despite this preference of different image priors for
different images, the PSNR iteration curves for TV norm
and LLT norm almost overlay with each other for small
iteration numbers. This is probably because the ADMM-
denosiers primarily reconstruct the key features inside the
image that are promoted by both the priors. It would then
be interesting to compare these denoised images at early
iteration stage before the convergence to see which features
are reconstructed first, which is beyond the scope of this
project and remains to be explored in the future.

5.2 Evaluation on real experimental data
Having validated the performance of the constructed Pois-
son denoisers on synthetic data, I next sought to evaluate
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Fig. 2. Evaluation of ADMM-based Poisson denoisers on different experimental images, including 3D-printed boat (a), toolbox level and tape (b),
dark-field microscopy image of microparticles (c) and transmission microscopy image of USAF target (d). The images from left to right are: the
image with 10-s exposure time (the ground-truth image), the Poissonian image with 10-ms exposure time, the denoised image with L1-norm, the
denoised image with TV norm and the denoised image using LLT norm. The insets with red boxes on the bottom right of each image show the
zoom-in view at specific locations. The PSNR values for the noisy and denoised images with respect to the ground-truth images are labeled in the
right top corner of the image. The last column shows PSNR values of the denoised image as a function of iteration number for all three image priors
(L1-norm: blue; TV norm: orange; LLT norm: green).

their denoising performance on real experimental data.
The four sets of experimental images, including the long-
exposure ground-truth image, the short-exposure noisy im-
age, and three denoised images using different image priors
are shown in Fig. 2 above. These denoised results for exper-
imental Poissonian images revealed several key findings:

First, similar to the results on synthetic images, the
ADMM denoiser using L1-norm as the prior does not de-
noise the image very well (Fig. 2, the third column). This is
a little bit surprising for the particle dark-field image (Fig.
2c), which I hoped to capture a sparse image to fit with the
assumption behind the L1-norm. This unexpectedly poor
denoising performance of the L1-norm prior on the particle
dark-field image suggests that this image is not truly sparse.
Indeed, each individual particles seem to be comprised of
many pixels.

Second, different images prefer different priors, as we
have seen earlier for the synthetic images. Specifically, the
denoiser with TV prior performs slightly better than the
one with LLT prior on the 3D-printed boat image (Fig.

2a) as it converges faster and the final image looks cleaner
visually. This is expected since there are many piece-wise
constant components in this boat image. The toolbox level
and tape image (Fig. 2b) however, prefers LLT norm over
TV norm. This is mainly because there are many specular
reflection features on the toolbox level, which involve large
variation of the intensity within a few pixels. Such strong
spatial intensity variation cannot be reconstructed by the
TV norm, which just smooths out these features into a
large piece of constant value, but fits well with the linear
variation assumption behind the LLT norm, which results in
better denoising performance. Similar phenomenon is also
observed for the particle dark-field image (Fig. 2c), which
prefers LLT norm over TV norm. The staircasing artifact in
the TV-denoised image is very obvious, as a single particle is
split into a few different components, each with a relatively
constant value. The LLT norm on the contrary, results in a
much smoother particle appearance.

Third, the LLT norm outperforms TV norm for denoising
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the experimental images of USAF target (Fig. 2d), which
is the opposite for the synthetic data in Fig. 1c and also
quite unexpected. At a closer look, one can actually see
speckle artifacts in the TV-denoised image, although the
amplitude is smaller than that in the LLT-denoised image.
The PSNR iteration curves also look weird, which experi-
ence a few sharp peaks as the iteration proceeds before final
convergence. It would be interesting to take a look at these
denoised images at the early stage of iteration, which might
be helpful for understanding this unusual behavior.

6 DISCUSSION AND CONCLUSION

In this project, I constructed and evaluated ADMM-based
Poisson denoisers with three different image priors on both
synthetic and experimental images. The results suggest
that both TV norm and LLT norm are good image priors
for denoising Poissonian images in an ADMM framework,
while each of them have their particular advantages and
disadvantages. The TV norm promotes piece-wise constant,
thus performs better on images with large area of constant
values, such as the synthetic USAF target image (Fig. 1c) and
the experimental image of 3D-printed boat (Fig. 2a). This
assumption behind the TV norm, however, also causes the
staircasing artifacts and smear out some gradually varying
features in the image. The LLT norm on the contrary, pro-
motes linear variation of the intensity and thus outperforms
TV norm on the images with matching features such as the
synthetic interference pattern (Fig. 1b) and the experimental
image of the toolbox level and tape (Fig. 2b). Although LLT
norm helps eliminate the staircasing artifact, it introduces
speckle artifacts.

Furthermore, the denosier with L1-norm as the image
prior does not perform well on any set of synthetic or
experimental image. This is quite surprisingly for experi-
mental dark-field image of microparticles (Fig. 2c), as it was
intended to be used as a sparse image. This is probably
because Fig. 2c is still not sparse enough, as each individual
particle comprise of multiple pixels. As a future work, I
would like to combine L1-norm with the TV norm or LLT
norm as a joint regularier and see if that enables better
denoising performance for this type of ”pseudo-sparse”
images.

Despite the fact that the L1-norm prior fails to denoise
the images well, it indeed results in some improvement in
the PSNR values, and the output image looks like another
Poissonian image with higher photon counts (Fig. 1,2, the
third column). This leads me to think that it could be inter-
esting to use these L1-norm-denoised image as the input for
the other ADMM-based Poisson denoisers with TV or LLT
prior. Maybe this sequential denoising algorithm can result
in better denoising performance.

Additionally, I also identified another interesting future
direction when working on this project, which is to stop
the iteration process at some early stages and look at the
denoised images. This was inspired by the almost identical
PSNR iteration curves for the TV norm and LLT norm for
most of the images at the early iteration stage, suggesting
that some key common features were reconstructed first by
both the image priors. This early iteration study may also
be helpful for understanding the unusual fluctuation in the

PSNR iteration curve for the experimental image of USAF
target (Fig. 2d).

Lastly, one may also notice that in general the noisy
experimental images have a much higher PSNR values than
the noisy synthetic images, although some of the experi-
mental images look much more nosier (such as the 3D-
printed boat image in Fig. 2a). This might be because the
background for the experimental images is always dark,
which might seem to fit well with the ground-truth image
even without any denoising. This can also be seen in the
PSNR iteration curve, where even the initial guess of all-
zeros give higher PSNR values for the experimental images
than for the synthetic images.

To conclude, I have evaluated three different image
priors within an ADMM framework for denoising synthetic
and experimental Poissonian images. TV-norm and LLT-
norm are both good priors for Poisson denoising problem,
each with its particular advantages but also introducing
different types of artifacts. For the future direction, I may
combine different image priors as a joint regularizer or
apply these denoisers sequentially to hopefully improve the
denosing performance. It would also be interesting to stop
the iteration earlier to get some insight about the primary
common reconstructed features by different image priors.
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