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Denoising of InSAR Phase Closure
Elizabeth Wig

Abstract—InSAR phase closure arises when the phases of three InSAR interferograms are combined circularly. Phase closure has
been shown to correspond to soil moisture and has potential as a means to measure soil moisture. However, phase closure
measurements are very noisy. Current practice uses only linear averaging to reduce noise, but this also reduces the resolution. This
paper will explore the possibility of using other denoising techniques to improve the signal-to-noise ratio while maintaining a high
resolution. Each method: the linear mean, median, bilateral filter, non-local means, and DnCNN network, will be tested and compared
to the ground truth in situ soil moisture in a region of Oklahoma. The results will show whether image processing-based denoising
techniques are able to outperform a basic linear average when used on phase closure images to estimate soil moisture.

Index Terms—Computational Imaging, Denoising, Radar, InSAR
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1 INTRODUCTION

InSAR, or interferometric synthetic aperture radar, com-
pares phases between two radar passes over the same area
(usually from an aircraft or satellite) to see how the ground
is changing. InSAR is frequently used to capture defor-
mation, whether from earthquakes, volcanoes, fracking, or
other sources. The phase differences between the two radar
passes are used to form an interferogram, which maps how
the area is changing in phase across the radar image. The
nature of these interferograms is very noisy. To reduce noise
(and reduce large file sizes), the standard practice is to do
“multilooking” or spatial averaging. For example, taking 4
“looks” each in range and azimuth means averaging every
4 pixels in each direction, which reduces the file size by 16
times. Since original files can be quite large, this reduction
does decrease the resolution but increases the SNR, and
many applications do not require the high resolution – and
in fact find the computational power required to store and
process the high-resolution images to be too taxing.

For some applications, a higher resolution is desired.
Denoising methods such as bilateral filters, non-local means,
and neural networks, may be able to intelligently denoise
radar images while preserving a high resolution and not
losing data through averaging.

A more novel area within InSAR research is looking at
phase closure. While conventional InSAR differences the
phase between two radar acquisitions over the same area,
phase closure compares three images in a cycle, creating
three interferograms and differencing the phase between the
three. Figure 1 shows a schematic of the process of calculat-
ing phase closure. As shown in the equations, phase closure
appears to have some correspondence to soil moisture (as
well as vegetation, and other properties on the ground) [1],
[2], [3].

ϕclosure = ϕ12 + ϕ23 + ϕ31 ̸= 0 (1)

ϕclosure ∝ soil moisture (2)

Phase closure only arises in images that have been multi-
looked, or spatially averaged. An image with no multilook-
ing will have zero phase closure. For this reason, some level
of basic spatial averaging is necessary to generate phase

Fig. 1. Phase closure cycle around three InSAR images. The three
interferograms have phases ϕ12, ϕ23, and ϕ31.

closure images. However, it is possible that, instead of a
high amount of multilooking used to generate the phase
closure images (e.g. 30 looks in each direction), a smaller
number of looks could be used instead (e.g. 10 looks in
each direction) and supplemented with sophisticated image
processing techniques to achieve a higher resolution in the
final data. This paper will explore that possibility.

2 RELATED WORK

InSAR is a well-established field at this point, and some
people have done research into, for example, using CNNs,
nonlocal means, and other denoising methods to improve
the quality of InSAR images [4], [5], [6].

The study of phase closure in InSAR is relatively new,
and in particular, the method outlined in the following
section was first presented at a conference in December [7].
This method is based on work by Michaelides, Ansari, and
De Zan [1], [2], [3] showing that InSAR phase closure ap-
pears to change according to soil moisture. However, prior
to this presentation, a method for estimating soil moisture
from phase closure had not been put forth. Ansari and De
Zan showed that there was a persistent phase bias which
had some relation to soil moisture, and Michaelides et. al.
showed that it was possible to correct this phase. This paper
builds on that work.
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3 PROPOSED METHOD

This section will first discuss the general method for finding
soil moisture values from phase closure, including the two
stages where spatial averaging is currently performed. It
will then move to discuss the method for this paper, and
the potential of replacing spatial averaging, especially in the
second stage, with an image processing technique. Instead
of a simple linear denoising technique, the methods used
will include a median, bilateral, non-local means, and pre-
trained DnCNN denoising.

3.1 Data Sources
We tested the potential for integrating phase closure to
measure soil moisture at an InSAR swath across the middle
of Oklahoma, shown in Fig. 2. The Mesonet system of envi-
ronmental monitoring systems [8] provided daily in situ soil
moisture data at eleven sites across this swath at 5 cm depth.
To account for variations in soil moisture, and because the
phase triplets in InSAR were acquired over periods of at
least 24 days (three passes with a 12-day repeat cycle), we
temporally averaged the soil moisture measurements across
41 days surrounding the date of the middle image in the
phase triplet.

We derived the phase triplets from raw L0 Sentinel-1
data (λ = 5.5cm), which we processed using 30 x 30 looks,
with some additional spatial averaging after processing, for
a final pixel size of 900x750 m [9]. This pixel size can be
reduced if the number of looks is reduced.

To construct phase triplets, we used only adjacent triplet
sets, so the temporal baselines were short - generally 12 days
between acquisitions and 24 days across the entire triplet set.
Shorter baselines have been generally shown to correspond
to higher phase misclosure [2], which fades as temporal
baseline increases.

Fig. 2. Location of eleven Mesonet ground sites and InSAR swath in
Oklahoma.

3.2 Original Data Reduction Approach
Our data reduction approach is based on the assumption
that nonzero phase closure is caused by changing dielectric
properties in the area being imaged, such as changes in
bulk scattering processes due to changing soil moisture or
vegetation. The key assumption is that a change in dielectric
properties (such as a change in soil moisture) corresponds
to phase closure. This suggests that integrating the phase
closure over time could correspond to the soil moisture
itself, rather than its derivative or rate of change.

We integrate the phase closure over time using a cumula-
tive sum function, and find that a bias is present at all eleven
sites (Fig. 3a). The integrated phase closure at all sites has
a roughly monotonic increase over time. However, with the
foreknowledge that soil moisture is very unlikely to mono-
tonically increase over the course of years, this monotonic
increase likely contains a bias–soil moisture should fluctuate
within a fixed range from 0% to 100% saturated. We remove
the bias by fitting an appropriately shaped signal to each
cumulatively summed phase closure, and then subtracting
that signal to force the integrated phase closure to be zero-
mean.

We tested several shapes of fitting, including a linear fit,
a polynomial fit, and a square root fit (whose shape imitates
a random walk). We found that the random walk fit was the
best match to the shape of the integrated phase closure. We
fit this shape to the integrated phase closure signals at all 11
sites, and then subtract the fitted signal. Figure 3b shows the
fitted random walk signal with the integrated phase closure
at the Skiatook site.

(a) (b)

Fig. 3. (a) At all sites, phase closure appears to near-monotonically
increase, suggesting some type of bias in the signal. (b) We found that
the best fit to this bias was a ”random walk” or square-root shaped
signal.

Figure 4 shows the bias-corrected integrated phase clo-
sure plotted next to the soil moisture for the Skiatook site.
The two quantities appear to be anticorrelated. We can thus
investigate the possibility of using this parameter, which
we derived from phase closure, as a means of tracking
soil moisture. This bias-corrected integrated phase closure
appears to track in situ data much more closely than the
original, non-integrated phase closure.

Fig. 4. Bias-corrected integrated phase closure appears to be strongly
anticorrelated with soil moisture.
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We create a scatterplot of the two parameters graphed in
Fig. 4 against one another. Figure 5 plots the soil moisture
against the bias-corrected integrated phase closure at the
Skiatook site.

Fig. 5. The parameter of bias-corrected integrated phase closure ap-
pears to have a strong correlation with soil moisture. The correlation
coefficient |R| = 0.71.

We can then create a fit line between these two quantities
and use the fit line to make a prediction of soil moisture from
the phase closure, shown in Fig. 6. This prediction appears
to track quite closely, rising and falling in the same areas.
While the amplitude does not track exactly, particularly
at times with very low soil moisture, this parameter does
appear to track when soil moisture is rising and falling
accurately.

Fig. 6. The prediction of soil moisture based on phase closure at the
Skiatook site appears to track quite closely, though it does not always
capture areas of very low soil moisture.

3.3 Denoising Methods
As previously mentioned, there are two denoising stages,
and the current practice uses linear averaging for both. The
first, the multilooking stage, is currently done with a speed-
optimized Fortran code and is required to turn the very
noisy initial radar measurements into something resembling
an image. (For example, compression using traditional im-
age compression methods on this initial image barely make

a dent in its size). The second stage has more flexibility
and a starting format that is more image-like, so this was
chosen as the stage with greater potential for optimization
of the denoising method. Pretrained methods trained on
traditional images would have a greater chance of working
on this stage-two image. Figure 7 shows the steps taken to
find an estimate for soil moisture from InSAR phase closure.
The denoising step is the part of the flow that is being
optimized in this work.

Fig. 7. High-level overview of processing steps to get soil moisture
estimates from InSAR phase closure.

Five denoising methods were tested on the original
images. The original processing flow used linear averaging
in stage two on an image that had been multilooked 30
times in each direction (meaning the resolution before the
second processing stage was 900x worse than the original
radar image). The denoising methods were used on each
radar image in the time series to see whether they could
improve the resolution and accuracy over linear averaging.

Because a higher resolution was desired, the denoising
methods were tested after stage-one multilooking with 10
looks in each direction (meaning the resolution of the initial
image in stage two was 9 times higher than in previous
work).

The types of denoising included a linear mean, used as
the control and past standard for this experiment; a median,
used with the same kernel size as the mean; a MATLAB
built-in bilateral filter made using imbilatfilt and optimized
over degree of smoothing; a MATLAB built-in non-local
means filter using imnlmfilt and also optimized for degree
of smoothing; and a pretrained built-in DnCNN neural net
in MATLAB. The DnCNN had no controllable parameters,
but a parameter sweep was run over the degree of smooth-
ing for the bilateral and non-local means functions. The
results of the parameter sweep are shown in Fig. 8.

A relatively high degree of smoothing was found to be
optimal for both the bilateral and non-local means filters.
The parameter sweep found that a degree of smoothing of
100000 for the bilateral filter and of 3 for the non-local means
filter was ideal. Once the optimal filters were found, each
image in the time series of phase closure images was filtered
using the appropriate spatial filters. The filtered images
were then processed using the integration and bias removal
method outlined in the previous section. Then the bias-
corrected integrated phase closures were compared to the
soil moisture. This involved both calculating the correlation
coefficient between the corrected phase closure for each
filtering method, as well as running a regression of the soil
moisture against the phase closure to generate an estimate
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Fig. 8. Parameter sweep by degree of smoothing for the Bilateral and
Non-Local Means built-in MATLAB filters. The parameters were chosen
to maximize the correlation between the filtered image series and the
soil moisture time series.

of what it might look like if only InSAR was used to estimate
the soil moisture using each method.

4 EXPERIMENTAL RESULTS AND DISCUSSION

Figure 9 shows the estimated soil moisture using each
method using a linear regression against the ground truth
from the in situ stations - at a sample site in Skiatook. From
this plot of estimated (and true) soil moisture over time, it
can be seen that some denoising methods result in better
estimates than others. None fully capture the troughs of
very low soil moisture in the summers of 2018 and 2020, but
the nonlocal means method does a very good job capturing
the summer 2019 dip in soil moisture. The bilateral-filtered
time series does worse and does not even seem to vary
along with the soil moisture. The DnCNN-derived estimate
also performs relatively poorly, while the mean and median
filters match the ground truth moderately well.

Fig. 9. Prediction of soil moisture at Skiatook site using image time
series from each denoising method. The ground-truth measured soil
moisture is in bright blue. In aggregate, none of the denoising methods
perfectly captures the soil moisture, but some do better than others.

Quantitatively, the bilateral filter also has worse perfor-
mance. Table 1 shows the correlation between the InSAR-
derived parameter and the soil moisture, averaged across
the 11 sites, and its standard deviation. This was calculated
for each method.

TABLE 1
Mean and Standard Deviation of Correlation (between InSAR phase

closure and soil moisture) for each Denoising Method

Method Average Correlation Standard Deviation

Linear Mean 0.2914 0.1569
Median 0.3109 0.1483
Bilateral 0.1546 0.1839

Non-Local Means 0.3203 0.1763
DnCNN 0.0693 0.3094

It is also of interest to see how each filter affects an
individual InSAR phase closure image, to better understand
how the filtering may change the output. Figures 10 through
14 show the first image in each time series for a qualitative
analysis of how the filters affect the radar image. Overlaid
with the image is a dot representing the correlation between
the soil moisture and the phase closure-derived parameter
at each site. Redder dots indicate higher correlation and a
better match to soil moisture. There is a significant amount
of variation among sites, but some methods have overall
higher correlation across sites than others. The biggest dif-
ference in the images is the blur level. The mean, median,
and non-local means filtered images look significantly blur-
rier than the bilateral and DnCNN images - and they have
higher performance. It seems that preservation of edges or
the features that the DnCNN network was trained on does
not improve performance for the phase closure images. The
median and non-local means both perform slightly better
than the mean filter. This may be because the median is
more robust to outliers than a simple mean, while the non-
local means can pull data from disparate areas with similar
shapes or statistical properties, such as agricultural fields.

Fig. 10. Sample phase closure image filtered with linear mean of 11x11
pixels (chosen based on desired resolution). This image has a fairly high
level of blur.

In Figure 15 section, we can see quantitatively that the
average correlation is best for the mean, median, and non-
local-means denoising methods. The bilateral and DnCNN
have worse performance overall, although all have a high
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Fig. 11. Image filtered with a median fitler over 11x11 pixels (chosen
based on desired resolution). This image, like the linear one, has high
levels of blur. However, it looks slightly sharper, probably because the
median is better about preserving edges rather than smoothing over
them.

Fig. 12. Sample image filtered with a bilateral filter with the optimized
smoothing parameter of 100000. Even with the ”high” level of smoothing
for this pre-built filter, it looks noticeably sharper and has more fine
grains than the mean or median filtered images. The lighter colored dots
at the locations of the soil moisture measurement sites indicate that the
correlation between this phase closure and soil moisture is worse.

standard deviation. Moreover, even the best-performing
sophisticated denoising method does not significantly out-
perform the basic mean and median filters.

One constraint to weigh against better performance is
processing time. In this area, the mean and median filters
have the clear advantage (each taking less than a few sec-
onds), while the bilateral and non-local means filters each
take a few minutes on a laptop CPU, and applying the
DnCNN takes over half an hour. If processing time is at
all a constraint, mean or median have the clear advantage,
especially given the marginal advantage that the non-local
means has over either.

This project showed the limitations of image processing
networks from the EE367 class. While many methods work

Fig. 13. Sample image filtered with a non-local means filter with an
optimized degree-of-smoothing parameter of 3. This image has a higher
level of blur, more similar to the linear mean and median filters. There is
a wide spread of goodness-of-fit (redder dots = better fit), but in general
the fit is relatively good with this method.

Fig. 14. Sample image filtered with MATLAB’s pre-trained DnCNN de-
noising neural network. This image has the finest grains and highest
resolution of the set, and also the lowest correlations with the in situ soil
moisture data.

well for traditional images, they falter for radar images,
where the statistics are different and there is less ability
to smooth or compress easily. The method that was the
most highly trained to conventional images, the pre-trained
DnCNN neural net, performed the worse on the phase clo-
sure images. The bilateral filter, which retained sharp lines
for the sample images from class, did not seem to retain the
right details to give good quality soil moisture predictions.
Of the more sophisticated image processing techniques, the
non-local means performed the best. Intuitively, the strength
of the non-local means method–leveraging areas with sim-
ilar statistics from different parts of the image–seems to be
better adapted to radar phase closure images. The algorithm
may be finding and combining data from different regions
with similar statistical properties, such as wheat fields.
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A clear need if this work were to continue would be
images trained on radar, or specifically on phase closure.
There is not much phase closure data processed or available
for use currently, so without a strong training set, the use
of these methods is perhaps premature. Where out-of-the-
box image processing methods falter, more tailored methods
can step in, but the area of study of InSAR phase closure
is relatively new and small, so no methods have been
developed. This leaves lots of room for future work in the
area as the properties of InSAR phase closure become more
well-understood.

Figure 15 shows a final comparison of the methods’
accuracy to the soil moisture ground truth, as well as the
standard deviation. For all methods, the standard deviation
from one site to another was high–in part due to a low
number of sites used, but also because the sites did vary
in quality.

This variation in accuracy of InSAR measurements from
one site to another is an active area of interest in my
current research. Characterization by land cover type and
vegetation level (using measurements such as the Nor-
malized Difference Vegetation Index) is ongoing work that
will hopefully yield more accurate estimates. For example,
soil moisture may be better estimated in areas with less
vegetation cover or only certain types of vegetation, or
there may be some compensation for a thicker tree canopy.
More advanced image processing techniques may be able
to categorize estimates based on land cover type and other
properties. Future study will explore these possibilities
more.

Fig. 15. Comparison of methods (a graphical presentation of the data in
Table 1). The mean accuracy, again represented by correlation between
the InSAR time series and the ground-truth soil moisture, is shown
with a dot, and the error bars represent the standard deviation in each
direction.

5 CONCLUSION

In conclusion, it’s clear that the conventional image filters
are not optimized for radar. Data trained specifically on
radar or on phase closure would be necessary for better-
correlated results. Non-local means performed best: it may
have been able to synthesize areas with similar traits, such
as wheat fields. However, even the best sophisticated de-
noising method did not significantly outperform the basic

mean and median filters. Especially considering processing
time, the mean and median may be the best filters for
now. This demonstrates the limitations of the computational
imaging methods from the EE367 class, and shows that op-
timization for optical images does not necessarily translate
to radar.

Future work will involve more closely associating land-
cover type and vegetation to characterize soil moisture
matching in different areas. While these results show de-
cent correlation, ultimately more averaging trumps all other
methods here. In other work with 30x30 looks instead of
10x10 (as presented at [7]), the results are better-correlated:
closer to 0.4 or 0.5 rather than the 0.3 that is the best here.
None of these methods is a magic bullet for this problem,
but it was interesting to explore!

ACKNOWLEDGMENTS

The author would like to thank and credit Howard Zebker
and Roger Michaelides for their collaboration on the original
work that this denoising class project is based on.

REFERENCES

[1] F. D. Zan, A. Parizzi, P. Prats-Iraola, and P. López-Dekker, “A sar
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