
1

Comparison of Randomly Undersampled
Magnetic Resonance Imaging Reconstruction

Methods
Xuetong Zhou, Qingyue Wei

Abstract—Compressed sensing is widely used in magnetic resonance imaging for it allows reduced scan time by sampling fewer data
points in k-space. In this project, we mainly focus on the reconstruction of randomly undersampled images. ADMM with TV priors and
Convolutional Recurrent Neural Network (CRNN) are investigated and compared with one of the conventional reconstruction methods
– l1 wavelet regularized reconstruction. Three datasets are adopted to evaluate our methods including 1) Cardiac MR image dataset,
2) MRNet dataset, and 3) Brain tumor dataset. All the methods could effectively improve PSNR and remove artifacts. CRNN
outperforms the ADMM based methods under all tested conditions. Compared with TV priors, l1 wavelet shows the best performance
in improving PSNR but worst in artifact reduction.

Index Terms—MRI Reconstruction, Compressed Sensing, ADMM, l1 Wavelet, Total Variation, Convolutional Neural Network

✦

1 INTRODUCTION

MAGNETIC resonance imaging is a noninvasive imag-
ing modality with excellent soft tissue contrast. How-

ever, one of the main drawbacks of MRI is the long scan time
needed to localize the MR signal to generate an image. Fast
imaging is also limited by factors of hardware (gradient am-
plitude and slew rate), and physiological constraints, (nerve
stimulation and patient discomfort). As time constrains the
use of MRI in high-resolution imaging or dynamic imaging,
compressed sensing is widely used to reduce the scan time.

In MRI, different from the natural images, sampled data
points are stored in k-space, which is the frequency domain
in MRI. Images are acquired by taking 2D Fourier transform
to k-space data. When fewer data points are sampled in the
k-space, the Nyquist criterion is violated thus leading to se-
vere artifacts and a decrease in spatial resolution. Examples
of undersampled MRI images are presented in Fig. 1. The
uniformly undersampling pattern in k-space, for example,
sampling evenly spaced rows, mainly results in aliasing
artifacts, which can be resolved by many proposed methods
exploiting the redundancy in k-space. Randomly undersam-
pling pattern, however, leads to incoherent artifacts that
become difficult to resolve. Reconstruction of a high-quality
image from undersampled k-space data is important not
only for clinical diagnosis but also for automatic processing.

In this project, we aim to focus on the random un-
dersampling pattern, and use methods that we learned
in class, such as ADMM with image priors and convolu-
tional neural network, to mitigate the incoherent artifacts.
The methods are evaluated with different undersampling
rates and compared with one conventional MRI compressed
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Fig. 1. Example of undersampling patterns and resultant images

sensing reconstruction technique – l1 wavelet regularized
reconstruction [1]. Code is available at https://github.com/
aijinrjinr/MRI Reconstruction.

2 RELATED WORK

2.1 MR based methods
Currently, there are two major methods that can be used for
the reconstruction of randomly undersampled MRI images,
CG SENSE [2] and SPIRiT [3]. CG SENSE is a highly efficient
reconstruction method proposed by Pruessmann et al. [2].
The forward model can be written as

F = Em (1)

where m is the vectorized reconstructed image, F is the
vectorized sampled data in k-space, E is the encoding
matrix including terms of coil sensitivity and spatial en-
coding. Artifact reduced image is acquired by solving m

https://github.com/aijinrjinr/MRI_Reconstruction
https://github.com/aijinrjinr/MRI_Reconstruction


2

using conjugate gradient descent. One disadvantage of this
method is that it requires accurate coil sensitivity maps [4].

SPIRiT, which is an iterative method proposed by Lustig
et al. [3]. It recovers missing data points in k-space by
exploiting correlations between neighboring k-space points.
Within each iteration, weights of neighboring data points
are estimated using calibration dataset. Missing data points
are filled by convolving the weighting kernel with k-space
until stop criteria is met. One drawback of SPIRiT is that
it is relatively computationally intensive for it requires it-
eratively estimating weighting kernels from the calibration
data and convolving the kernels with the data. In addition,
it needs a calibration dataset.

2.2 Deep learning based methods

With the rapid development of Artificial Intelligence, deep
learning based methods are now widely used for solving
inverse and compressed sensing problems. Current popular
methods could be divided into two groups. The first group
mainly focuses on applying the unrolling method in a deep
learning model. For example, Hammernik et al. [5] pro-
posed a variational network that could combine the deep-
learning method with a variational model. ADMM-Net [6]
embedded the Alternating Direction Method of Multipliers
(ADMM) algorithm into a deep-learning model for MR
images reconstruction problems. And Adler et al. [7] utilized
the prior information related to inverse problems in a deep-
learning based method. The second group uses end-to-end
deep learning methods. Schlemper et al. [8] built a deep
cascade network that could effectively simulate the iterative
reconstruction process for 2D Cartesian undersampling MR
images. MICCAN [9] was constructed based on U-Net [10]
and could pay more attention to high-frequency information
by applying a long skip connection. And Wang et al. [11]
proposed a parallel convolution neural network for MRI
reconstruction and could take advantage of the correlation
between the real and imaginary parts of MRI.

3 PROPOSED METHOD

3.1 Problem Formulation

Given an undersampled k-space data y, our goal is to
reconstruct the artifact reduced images x. The optimization
objective is

argmin
x

1

2
||Ax− y||22 + λ||Fx||1, (2)

where A is the operator that represents taking 2D Fourier
transform of the image and undersampling in k-space, F
represents the operator of the image prior, λ represents the
relative weight between the data fidelity and the regulariza-
tion term.

3.2 l1 wavelet

Compressed sensing theory suggests that accurate recon-
struction can be achieved using the knowledge that the

image is sparse in some transform domain [12]. The recon-
struction can be done by solving the nonlinear constrained
optimization problem:

minimize ||Ψm||1
s.t. ||Fum− y||2 < ϵ (3)

where Ψ is the linear operator that transforms the image to a
sparse representation (e.g., discrete cosine transform (DCT)
and wavelet transform), m is the vectorized reconstructed
image, Fu presented the operations including 2D Fourier
transform and undersampling in k-space, y denotes the
acquired undersampled k-space data [1]. Thus, the l1 norm
of Ψm is used as a prior to promote sparsity of the data.
The Daubechies-4 wavelet transform is used for the sparse
operation.

3.3 Total Variation (TV)

Total variation exploits the fact that natural images are
constituted by large regions of constant and sharp transi-
tions between objects. TV promotes sparse gradient of the
solution using the l1 norm of the image gradients [13].
Though it is firstly proposed for image denoising, TV has
been found to be very useful in many inverse problems
in image processing, for example, deblurring and restora-
tion [14]. Anisotropic and isotropic TVs are investigated in
this project:

TVa(x) =
N∑
i=1

√
(Dxx)2i +

√
(Dyx)2i , (4)

TVi(x) =
N∑
i=1

√
(Dxx)2i + (Dyx)2i , (5)

3.4 ADMM

Alternating Direction Methods of Multipliers (ADMM) is
used in this project to solve the optimization objective
shown in Eq. 2. ADMM is an iterative approach to solve con-
vex optimization problems by splitting the data consistency
term and the regularization term in the objective function
and solving them in an alternating manner [15].

The update equations are as follows:

xk+1 := (ATA+ ρFTF )−1(AT b+ ρFT (zk − uk)), (6)

zk+1 := Sλ/ρ(Fxk+1 + uk), (7)

uk+1 := uk + Fxk+1 − zk+1, (8)

where F is the operator of the image prior which, in this
project, refers to taking wavelet transform or computing
the finite differences. Conjuagte gradient solver is used for
x-update. Element-wise soft thresholding operator is used
as the proximal operator for both l1 and TV priors.
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Fig. 2. Network structure for CRNN.

Iteration 
Block 1

Iteration 
Block 2

Iteration 
Block 3

Conv 
Block 

concatenation concatenation concatenation

Conv
Layer

Fig. 3. Structure for CRNN Block.

3.5 CRNN
As for deep learning based model, following the idea
of [16], we adopted a convolutional recurrent neural net-
work (CRNN) architecture for MRI reconstruction. Unlike
the unrolling methods (e.g., ADMM-Net [6]), CRNN is an
end-to-end network. It employs several recurrent blocks to
simulate the iterative process of reconstruction. The whole
reconstruction could be written as

x̃i = FN (FN−1(. . . (F1(xi,mi; θ1) . . . ); θN−1); θN ), (9)

where xi is the ith undersampling input, mi is the relevant
undersampling mask. x̃i is corresponding reconstructed
image. Fj(·) is the jth simulated recurrent block and θj is
corresponding parameters where j = 1, 2, . . . , N . N is the
total simulated recurrent block number.

As shown in Fig. 2, for each recurrent block Fj(·), it
consists of three components:

• 1) CRNN Block
• 2) Residual Connection
• 3) Data Consistency (DC) Layer

1) CRNN Block. As shown in Fig. 3, the CRNN Block is
composed by a convolution layer, three cascade iteration
blocks, and one convolutional block. To start with, the
convolution layer is first applied to expand the channel di-
mension of input xi. Then follows by three iteration blocks.
Each iteration block is a cascade dense convolutional layer
composed by [Batch normalization [17], 2 × (ReLU [18],
convolution-layer)]. Denote the input and output of the
sth iteration block as H

sj
in , H

sj
out where s = 1, 2, 3. The

input of the (s+ 1)
th
j iteration block is the concatenation

of H
sj
in and H

sj
out along the channel dimension, denoted

as [Hsj
in ;H

sj
out]. And the final output is [H3j

in ;H
3j
out]. By

concatenating the input and output of each cascade layer,
the hidden information from different iteration steps could
be analyzed at the same time and thus, could obtain useful
feature from previous steps. Moreover, using cascade lay-
ers with multiple convolutional operators could help the
network extract more complicated and abstract information.
Specifically, here we adopt dilated convolutional operator in
each cascade layer which could help expand the receptive

field without losing information and the output could then
contain a large range of information. And the number of
input and output channels of these three cascade dense
convolutional layers are (16, 16), (32, 16), (48, 16) respec-
tively. As for the convolutional block, it includes 2×[Batch
normalization, ReLU, convolution layer].
2) Residual Connection. The output of the Residual Con-
nection is

Outresi = x̃j−1
i +Outconvi , (10)

where x̃j−1
i is the input of Fj(·) and also the output

of Fj−1(·) and + indicates the pixel-wise addition. And
Outconvi is the output of the last convolution layer in the
Convolutional Block. With such residual operation, the re-
construction result from previous recurrent block could be
taken into consideration simultaneously. Meanwhile, as the
recurrent block number increases, residual connection could
help prevent the degradation problem in the Deep Neural
Networks [19] and alleviate the vanishing gradient problem
as well.
3) Data Consistency (DC) Layer. To enforce the data fi-
delity between the reconstructed image x̃j

i and the original
undersampling image xi, for each iteration block, a data
consistency is applied to make sure the value of x̃j

i in k-
space at the sampled pixel is the same as it of xi in k-space.
Specifically,

x̃j
i = f−1(f(Outresi ) + (−f(Outresi ) + ki) ◦mi), (11)

where f means fast Fourier transform, f−1 is the inverse
fast Fourier transform and ki is the k-space undersampled
input, mi is the relevant undersampling mask. ◦ indicates
the Hadamard product.

Loss. During training, at each step, given a batch of input
S = {(xi, yi,mi)}bi=1 where b is the batch size and yi is the
ground-truth image. We use the pixel-wise mean squared
error (MSE) as the objective function where

L(Θ) =
1

b

∑
(xi,yi,

ki,mi)∈S

||x̃i − yi||22, (12)
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TABLE 1
Parameters used in ADMM

dataset ρ λ

Cardiac l1 wavelet 1e-2 4e-3
Cardiac TVa 3e-2 3e-3
Cardiac Tvi 3e-2 4.5e-3

Knee l1 wavelet 1e-2 4e-3
Knee TVa 3e-2 9e-3
Knee TVi 3e-2 1.2e-2

Brain l1 wavelet 1e-2 4e-3
Brain TVa 3e-2 3e-3
Brain TVi 3e-2 4.5e-3

where Θ is all the parameters of CRNN.

4 EXPERIMENTAL RESULTS

Dataset and Evaluation Metric. We evaluate our methods
on three different datasets including 1) Cardiac MR image
dataset [20], 2) MRNet dataset [21], and 3) Brain tumor
dataset [22]. Since our methods all deal with 2D data, for
3D image data, we use its 2D slices as inputs.

• Cardiac MR image dataset is a short-axis cardiac
datasets which consists of 33 patients. Here we in-
clude 30 patients as the training dataset and the other
3 as the evaluation dataset. Following [16], the total
selected slice number of training dataset is 3000, and
300 for validation. And inputs are padded with zero
to the size of 256 × 256.

• MRNet dataset contains three different views (coro-
nal, sagittal and axial) of knees MR images for each
patient. Here we only include data in the coronal
view. To save training time, we randomly pick 100
patients (1478 slices in total) out of 1130 from its
training split as our training dataset and 10 patients
(145 slices in total) out of 120 from its validation split
as our validation dataset. And the original size of
each slice is 256 × 256.

• Brain tumor dataset is composed by 3064 T1-
weighted contrast-enhanced images in axial view.
For better reconstruction, we only include 106 images
with high-quality as our dataset. Among them, 94
images are used as the training dataset and 12 images
as the validation dataset. Size of each image is 512 ×
512. Under such setting, we also want to explore the
ability of CRNN to deal with small dataset.

Two metrics, including Peak Signal to Noise Ratio (PSNR)
and Structural Similarity (SSIM) are applied for quantifying
reconstruction performance of CRNN. And PSNR is also
used for evaluating the results of ADMM based methods.

4.1 Experiments details
For ADMM based experiments, three testing MR images,
including one knee image, one cardiac image and one brain
image, are retrospectively undersampled by randomly gen-
erated masks with the sampling rates of 80%, 60% and 40%.

For the ADMM experiments, the optimal convergence
parameter ρ and the regularization weight λ are found

TABLE 2
Average PSNR/SSIM from CRNN on different datasets in validation set

dataset ratio PSNR(dB) SSIM

Cardiac 0.4 37.26 0.9536
Cardiac 0.6 45.26 0.9878
Cardiac 0.8 61.15 0.9996

Knee 0.4 32.12 0.9516
Knee 0.6 39.99 0.9870
Knee 0.8 51.04 0.9985
Brain 0.4 34.83 0.9019
Brain 0.6 41.39 0.9636
Brain 0.8 46.00 0.9843

empirically and used in generating the reconstructed im-
ages. The parameters for each experiment are presented in
Table 1.

All experiments related with CRNN are implemented
in PyTorch. Input images are resized to 256 × 256 for all
experiments. We train all models with a batch size of 10
for 1000 epochs with 0.0001 as the learning rate. We apply
Adam optimizer with weight decay at 1e-7. Besides those
three testing images, for CRNN, we also evaluate its perfor-
mance over the whole validation sets under three different
undersampling rates mentioned above respectively.

4.2 Results

Comparison among all methods. Comparison of experi-
ment results of three selected test images from correspond-
ing validation sets are presented in Fig. 3-5. Their corre-
sponding PSNR are listed in Table 3-5. All the methods can
effectively reduce the undersampling artifacts and improve
PSNR of all three test images.

Images reconstructed by CRNN show the highest PSNR
values and restoration of details. Its superiority is most
obvious on images with low undersampling rate of 40%
and images with most fine details that are difficult to be
reconstructed (e.g., knee images). However, there are still
incoherent artifacts left in the 40% sampled brain image.

Among the three image priors tested, l1 wavelet shows
the greatest improvements of the PSNR values on the
cardiac and brain images, while anisotropic TV produces
highest PSNR values on knee images. However, by
comparing the reconstructed images, l1 wavelet obviously
has worst artifact reduction effect. Disturbing incoherent
artifacts still exist on 40% sampled brain and knee images.
Two TV priors show comparable PSNR improvement and
artifact reduction. Both of them can restore a majority
of detailed features even on images sampled with 40%
data points in k-space. However, they produce another
undesired effect, change of image contrast, which is obvious
on 40% sampled brain and knee images.

Internal Comparison for CRNN. As shown in Table 2,
CRNN achieve high PSNR and SSIM under all selected
undersampling rates among these three datasets. Highest
PSNR results in 61.15 dB when undersampling rate is 80%
in Cardiac MR image dataset. And while the undersampling
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TABLE 3
PSNR results for each method on the chosen cardiac image

ratio Zero filling l1 wavelet TVa TVi CRNN

0.4 15.6 25.9 24.4 24.9 37.4

0.6 18.8 30.5 26.0 26.6 44.2

0.8 23.5 38.9 35.3 34.7 62.9

TABLE 4
PSNR results for each method on the chosen brain image

ratio Zero filling l1 wavelet TVa TVi CRNN

0.4 15.5 24.4 23.7 23.8 33.3

0.6 18.6 32.3 30.0 29.9 40.4

0.8 24.2 41.3 42.5 42.1 46.3

TABLE 5
PSNR results for each method on the chosen knee image

ratio Zero filling l1 wavelet TVa TVi CRNN

0.4 13.8 16.9 21.0 20.7 31.4

0.6 15.9 20.6 21.1 20.9 39.0

0.8 19.9 24.7 32.1 30.8 49.7

rate increases, PSNR also shows significant growth, espe-
cially for the Cardiac dataset.

5 DISCUSSION

5.1 Comparison of image priors
One interesting result we find is that, compared to TV priors,
l1 wavelet produces images with highest PSNRs but worst
artifact reduction. In [1], l1 wavelet is proved to be more
robust with variable density undersampling pattern in k-
space, which is to have a higher sampling density near
the center of k-space and a lower sampling density in the
periphery of k-space. It is because the coarse-scale image
components, which correspond to low-frequency region
near the center of k-space, should be less sparse then fine-
scale components, which correspond to high frequency in
the periphery of k-space [1]. With the uniform density un-
dersampling scheme that is used in this project, the coarse-
scale components are suppressed due to the lack of low-
frequency data in the data consistency constraint. This can
explain the reason why l1 wavelet fails to remove all the
incoherent artifacts.

For the resultant images acquired using TV priors, no-
ticeable contrast change is caused by minimizing the l1
norm of differences in the images. This is also the reason
of relatively low PSNRs of TV produced images. Some
modifications of TV have been proposed to mitigate this
contrast change, including forward and backward diffusion
(FBD) [23], shock filters [24] [25]. A future work of this
project would be using a modified TV prior to preserve
image contrast without sacrificing artifact reduction effect.

5.2 Use of deep learning
For the CNN based method, although it outperforms
ADMM based methods under all undersampling rates in

three datasets, it requires much more data to train a good-
performing model while ADMM based methods could deal
with only a single image. Moreover, its performance also re-
lies on the amount of data. As shown in Table 2, it’s obvious
that for the brain dataset which contains far less data, there
is less increase in PSNR while having more sampled data
points compared to the other two datasets. And in Table 4,
PSNRs are very close between ADMM + anisotropic TV
with CRNN when undersampling rate is 80%. Even though
there is not a such big gap among different undersampling
rates in brain dataset, CRNN still shows a quite robust
performance considering we only train it with nearly 100
images. Besides the data limitation, CRNN can not handle
different datasets or different undersampling rates using
only one specific model. For each rate in every dataset, we
need to separately train its corresponding model. Therefore,
for future work, we believe a more general and robust CNN
based model needs to be constructed (e.g., combining with
mode advanced modules) so that it is not sensitive to the
type of data (e.g., body parts) or the undersampling rates.

5.3 Constraints of this project
One limitation of this project is that all training and testing
images used are fully sampled, coil combined images from
online open dataset. However, in real MRI, data collection
is performed using several receive coils. With each of the
coils covering a small portion of the field of view (FOV),
image with a full FOV can be acquired by taking root sum
of square of all coil images. Multi-channel MRI is widely
used for it can extend the FOV and retain a high signal
to noise ratio (SNR). There is also a variety of approaches
being proposed that exploit the coil domain redundancy
on uniformly undersampled image reconstruction. A good
review to these approaches can be found in [26].

A future direction of this project is to test all the methods
with multi-channel raw MRI data. Reconstruction can either
be done by adding a coil sensitivity operation in linear
operator A of Eq. 2 or reconstruct coil images separately
and combined in the last step. Both of these two ways, we
assume, should be able to improve the reconstruction result
and provide leeway for further reduction of the undersam-
pling rate.

6 CONCLUSION

In this project, we have compared two methods for the
reconstruction of randomly undersampled images which
includes 1) ADMM based methods, and 2) a CNN based
method. For ADMM based methods, we have implemented
it with different priors including TV priors and l1 wavelet.
For the CNN based method, we have applied CRNN. All
methods are able to effectively improve PSNR and remove
artifacts. Among ADMM methods, l1 wavelet outperforms
the others but also shows weakness in artifact reduction.
Among all conducted experiments, CRNN has shown the
highest PSNR under different undersampled rates for all
included datasets.
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