
1

Depth from Defocus Approaches for Video
Depth Estimation

Zhengyang Wei

Abstract—Depth estimation remains challenging to perform with a single image due to the loss of three-dimension information.
Inspired by depth from defocus and the scale-consistent video-based learning, we propose a video depth estimation method called
DfD-SC-Depth, which applies unsupervised training with monocular snippets on the Depth from Defocus model. We demonstrate the
performance of our proposed method and the baseline on the NYUv2 dataset and analyze the results qualitatively and quantitatively.
Thanks to the combination of the strength of each technique, our method achieves better performance. Furthermore, this approach
offers a possibility for using a phase-coded aperture camera’s video to improve the depth from defocus model without extra depth
information.

Index Terms—Depth from Defocus, Video Depth Estimation, Video-based Learning
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1 INTRODUCTION

.

V IDEO depth information is important for robotics, au-
tonomous driving, 3D reconstruction, and beyond [1].

Depth information can be acquired by expensive sensors
like LIDAR and stereo cameras. Generating high-quality
depth-from-color can inexpensively complement these sen-
sors.

Monocular depth estimation(MDE) from a single color
image is challenging. Estimating absolute depth from a color
image is ill-posed without a second image for triangulation
[2]. Most MDE approaches rely on contextual cues to evalu-
ate the relative location of objects in an image [3]. Depth
from defocus processes are used for single image depth
estimation and outperform many state-of-art methods [4].
Well-designed end-to-end coded aperture MDE technique
can take full advantage of the monocular depth cue [5] and
achieve higher accuracy for depth estimation.

Video depth estimation considers the depth of a sin-
gle frame and the Spatio-temporal relationship between
adjacent video frames, which improves the performance
of depth estimation [2]. Furthermore, video-based learning
doesn’t have an impact on single-image-based tasks. Still,
it’s critical for video-based applications [6], which makes it
a practical approach to improve the performance of depth
estimation.

However, the depth from defocus method hasn’t been
applied to video video-based learning for depth estimation
yet.

This paper proposes a video depth estimation method
called DfD-SC-Depth, which applies unsupervised training
with monocular snippets on the Depth from Defocus model
and compares the proposed method with our baselines
qualitative and quantitatively. Specifically, our contributions
are the following:
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1) We proposed a framework that combined the unsu-
pervised video-based training based on scale con-
sistency with the depth from defocus method.

2) We conduct comparison experiments on NYUv2
dataset [7] and qualitatively and quantitatively ana-
lyze the results.

3) We proposed a feasible plan to improve models
with videos captured by the phase-coded aperture
camera without depth information.

2 RELATED WORK

2.1 Depth from defocus method for MDE

Besides pictorial cues, defocus blur is a vital depth cue
for monocular depth estimation. The camera can produce
defocus blur according to the depth of the object and camera
settings when capturing images. So, applying it to depth
estimation has become a trend.

Using images with defocus blur in deep learning ap-
proaches outperforms the use of all-in-focus images [8].
Conventional lenses or hand-crafted phase-coded apertures
have been regarded as powerful depth estimation tech-
niques [9]. With the development of deep optics, the End-
to-End coded aperture was used to improve the defocus
blur and encode more information [10]. Ikoma et al. pro-
posed a framework for single RGB image depth estimation,
including an occlusion-aware image formation model, a
rotationally symmetric phase-coded aperture, and the corre-
sponding preconditioning approach [5]. It can also estimate
an all-in-focus image, which is helpful to extract the Spatio-
temporal relationship between adjacent frames. The depth
from defocus method is one of the most promising ways to
solve the ill-posed problem.

2.2 Video depth estimation

Unlike depth estimation for a single image, video depth
estimation usually takes information between frames into
account. As a result, researchers attempt to design many
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self-supervised or unsupervised approaches to realize the
optimization of depth estimation models, mainly utilizing
the frame information of videos.

Monodepth2 uses minimum reprojection loss to tackle
occlusions between frames and auto-masking loss to ignore
stationary pixels [2]. Packnet has symmetrical packing and
unpacking blocks, and it uses the neighbor frames s tempo-
ral context to realize self-supervised scale-aware structure-
from-motion [11]. SC-Depth penalizes the inconsistency of
predicted depths of adjacent with frames geometry con-
sistency loss [6]. M4Depth maintains the Spatio-temporal
consistency with time recurrence and motion information
[12]. Robust CVD jointly optimize camera poses as well
as depth deformation in 3D and resolve fine-scale details
using a geometry-aware depth filter [13]. However, almost
all the video depth estimation methods haven’t considered
the depth from defocus approaches.

3 PROPOSED METHOD

In this section, we describe our proposed DfD-SC-Depth
model. The overall pipeline is illustrated in Fig.1.

3.1 Depth from Defocus Model

3.1.1 Image Formation Models

The imaging system’s depth-dependent point spread func-
tion(PSF) can be controlled by the surface height variation
of the diffractive optical element DOE of the phase-coded
aperture [14]. [14] proposes to use Equ.1 to model the PSF.

PSF (ρ, z, λ) = |2π
λs

∫ +∞

0
rD(r, λ, z)P (r, λ)J0(2πρr)dr|2

(1)
ρ and r are the radial distance on the sensor and aperture
planes; λ is the wavelength; s is the distance between
lens and sensor, and J0 is the zeroth-order Bessel function.
D(r, λ, z) is the defocus factor modeling the depth variation
of the PSF for points at a distance z from the lens and given
by

D(r, λ, z) =
z

λ(r2 + z2)
ei

2π
λ (

√
r2+z2−sqrtr2+d2) (2)

[15] proposed a radially symmetric DOE design which
reduces the required memory and time for optimization.
The corresponding phase delay P (r, λ) is defined as

P (r, λ) = a(r)ei
2π
λ (n(λ)−nair)h(r) (3)

Here nair is the refractive index of air, and a(r) is the
transmissivity of the phase mask. [5] adopts nonlinear dif-
ferentiable image formation model to the wavelength- and
depth-dependent PSF, which is given by Equ.4, where lk is

the sub-images, and αk is the binary masks composed by
quantized depth maps.

Ek(λ) := PSFk ∗
k∑

k′=0

αk′

l̃k :=
PSFk(λ) ∗ lk

Ek(λ)

ãk :=
PSFk(λ) ∗ αk(λ)

Ek(λ)

b(λ) =
K−1∑
k=0

l̃k

K−1∏
k′=k+1

(1− ã
′

k) + η

(4)

The nonlinear model can generate realistic defocus images
from color images and their corresponding densely labeled
depth maps for our method.

3.1.2 UNet-based Estimation for Image and Depth
We adopt the architecture proposed in [5].For defocus im-
ages produced by the nonlinear image formation models,
Tikhonov-regularized least squares method is used to map
the 2D image into a multiplane representation l(est) ∈
RM×N×K , as shown in Equ.5. It can generate a layered
representation with sharper details.

l(est) = argmin
l∈RM×N×K

∥b−
K−1∑
k=0

PSFk ∗ lk∥2 + γ ∥l∥2 (5)

Then, both the defocus image and its corresponding multi-
plane representation are concatenated, which is the input for
the UNet architecture. And the detail of the implementation
of the network is shown in TABLE 1.

3.2 Scale-consistent Depth Learning from Video
3.2.1 Framework overview
The framework is aimed to train the DfD depth network
and pose network from unlabeled videos. For two adjacent
frames (Ia, Ib) which are randomly sampled from a video,
the model can respectively estimate their depth maps(Da ,
Db) and relative camera posePab. So the the reference depth
Da

b can be synthesized with the source depth Da by differ-
entiable warping [6]. Then the reference depth maps can be
used for training the whole model as shown in Fig. 1.

3.2.2 Training Loss Function
[6] proposed a kind of objective function for scale-consistent
model, which is formulated as follows:

L = αLM
P + βLS + γLG (6)

α, β, γ are the loss weighting terms.
LM
P stands for the photometric loss LP weighted by the

proposed Ms and is defined as:

LM
P =

1

|V|
∑
p∈V

(Ms(p) · LP (p)) (7)

with the synthesized I ′a and the reference image Ia from
predicted depth Da and pose Pab, LP is formulated as

LP =
1

|V|
∑
p∈V

(
λ ∥Ia(p)− I ′a(p)∥1 + (1− λ)

1− SSIMaa′(p)

2

)
(8)
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Fig. 1. Our Framework. Given two adjacent coded images randomly sampled from the video, their depth maps and all-in-focus images are first
estimated by the DfD models. Then the relative camera pose is calculated by the PoseNet. With the predicted depth and pose, the reference depth
for the first frame is synthesized with the estimated depth of the second frame and camera pose. Then the network is supervised by the photometric
loss weighted by a self-discover mask, the smoothness loss, and the geometry consistent loss. Finally, the losses are averaged over valid areas
determined by an auto-mask.

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (9)

where V is the set of valid points that are successfully
projected from Ia to the image plane of Ib; p is the generic
point in V ; x, y stands for two 3 × 3 patches around the
central pixel; C1 and C2 are constants; µ and σ are mean
and variance of the image color respectively. And the depth
inconsistency map Ddiff for each p ∈ V and self-discovered
mask (Ms) are defined as:

Ddiff(p) =
|Da

b (p)−D′
b(p)|

Da
b (p) +D′

b(p)
(10)

Ms = 1−Ddiff (11)

Here, Da
b is the synthesized depth for Ib with Da and

pose Pab by the underlying rigid transformation. D′
b is an

aligning interpolation of Db.
LS stands for the edge-aware smoothness loss. Formally,

LS =
∑
p

(
e−∇Ia(p) · ∇Da(p)

)2
(12)

where ∇ is the first derivative along spatial directions.
LG is the geometric consistency loss which can be com-

puted with the inconsistency map.

LG =
1

|V|
∑
p∈V

Ddiff(p) (13)

which minimizes the geometric inconsistency of predicted
depths for two adjacent frames.

What’s more, the loss is averaged over valid points,
which are determined by the auto-mask Ma proposed in
(Godard et al. 2019). For each p ∈ V , we have

Ma(p) =

{
1 if ∥Ia(p)− I ′a(p)∥1 < ∥Ia(p)− Ib(p)∥1
0 otherwise

(14)
where Ma is a binary mask for each point in V , and I ′a is the
warped image from Ib using the estimated depth and pose.
It removes the points where the identity mapping results in
a lower loss.

4 EXPERIMENTAL RESULTS

This section discusses the design of our experiments and
then analyzes and evaluates the qualitative and quantitative
results.

4.1 Dataset

The NYU-Depth V2 (NYUv2) data set is comprised of video
sequences from a variety of indoor scenes as recorded by
both the RGB and Depth cameras [7]. We choose it for
our experiments since it has densely labeled depth maps
which can help us generate defocus images. And we use the
officially provided 654 densely labeled images for testing.
For the training data, we use videos of 27 different scenes.
The validation data is from the rest video and has the size
of 10% of the training data. And we fill the depth maps for
the dataset with NYU Depth V2’s toolbox according to Anat
Levin’s colorization approach1.

1. https://www.cs.huji.ac.il/w yweiss/Colorization/
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TABLE 1
UNet Achitecture for proposed DfD model (Ignoring the reduce of

height and width caused by convolution, and
N = 3 + 3#multiplane representation)

Input Layer Output

concat(image, inv)
H ×W ×N

Conv + ReLU
N ×N × 3× 3

Tensor 1
H ×W ×N

Tensor 1
H ×W ×N

Conv + ReLU
32×N × 3× 3

Tensor 2
H ×W × 32

Tensor 2
H ×W × 32

(Conv + ReLU)× 2
32× 32× 3× 3

Tensor 3
H ×W × 32—–1

Tensor 3
H ×W × 32

MaxPool Tensor 4
H/2×W/2× 32

Tensor 4
H/2×W/2× 32

Conv + ReLU
64× 32× 3× 3

Tensor 5
H/2×W/2× 64

Tensor 5
H/2×W/2× 64

Conv + ReLU
64× 64× 3× 3

Tensor 6
H/2×W/2× 64

Tensor 6
H/2×W/2× 64

MaxPool Tensor 7
H/4×W/4× 64

Tensor 7
H/4×W/4× 64

(Conv + ReLU)× 2
64× 64× 3× 3

Tensor 8
H/4×W/4× 64

Tensor 8
H/4×W/4× 64

MaxPool Tensor 9
H/8×W/8× 64

Tensor 9
H/8×W/8× 64

Conv + ReLU
128× 64× 3× 3

Tensor 10
H/8×W/8× 128

Tensor 10
H/8×W/8× 128

Conv + ReLU
128× 128× 3× 3

Tensor 11
H/8×W/8× 128

Tensor 11
H/8×W/8× 128

MaxPool Tensor 12
H/16×W/16× 128

Tensor 12
H/16×W/16× 128

(Conv + ReLU) × 2
128× 128× 3× 3

Tensor 13
H/16×W/16× 128

Tensor 13
H/16×W/16× 128

UpSample
Bilinear

Tensor 14
H/8×W/8× 128

concat(Tensor 11,14)
H/8×W/8× 256

Conv + ReLU
128× 256× 3× 3

Tensor 15
H/8×W/8× 128

Tensor 15
H/8×W/8× 128

Conv + ReLU
128× 128× 3× 3

Tensor 16
H/8×W/8× 128

Tensor 16
H/8×W/8× 128

UpSample
Bilinear

Tensor 17
H/4×W/4× 128

concat(Tensor 17,8)
H/4×W/4× 192

Conv + ReLU
64× 192× 3× 3

Tensor 18
H/4×W/4× 64

Tensor 18
H/4×W/4× 64

Conv + ReLU
64× 64× 3× 3

Tensor 19
H/4×W/4× 64

Tensor 19
H/4×W/4× 64

UpSample
Bilinear

Tensor 20
H/2×W/2× 64

concat(Tensor 20,6)
H/2×W/2× 128

Conv + ReLU
64× 128× 3× 3

Tensor 21
H/2×W/2× 64

Tensor 21
H/2×W/2× 64

Conv + ReLU
64× 64× 3× 3

Tensor 22
H/2×W/2× 64

Tensor 22
H/2×W/2× 64

UpSample
Bilinear

Tensor 23
H ×W × 64

concat(Tensor 23,3)
H ×W × 96

Conv + ReLU
32× 96× 3× 3

Tensor 24
H ×W × 32

Tensor 24
H ×W × 32

Conv + ReLU
32× 32× 3× 3

Tensor 25
H ×W × 32

Tensor 25
H ×W × 32

Conv + ReLU
4× 32× 3× 3

Tensor 26
H ×W × 4

4.2 Baseline Comparisons

We compare our method to the original methods:

1) Ikoma et al [5]. A framework for single RGB im-
age depth estimation, including an occlusion-aware
image formation model, a rotationally symmetric
phase-coded aperture, and the corresponding pre-
conditioning approach. We call this method DfD for
convenience.

2) SC-Depth [6]. An unsupervised method with video
data penalizes the inconsistency of predicted depths
of adjacent with frames geometry consistency loss.

4.3 Metrics

We choose RMSE, AbsRel, Log10 and a1, a2, a3 as the
metrics.

1) RMSE is a quadratic scoring rule that measures the
error’s average magnitude and is defined as follow:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi) (15)

2) AbsRel determines how bad the error is and doesn’t
depend on the size of the quantity. It’s defined as

AbsRel =
1

N

N∑
i=1

|yi − ŷi|
ŷi

(16)

3) Log10 only cares about the percentual difference
and is defined as

Log10 =
1

N

N∑
i=1

|log10 yi − log10 ŷi| (17)

4) a1, a2, a3

Threshi = max

(
yi
ŷi
,
ŷi
yi

)
aj =

#Threshi < 1.25j

N
, j = 1, 2, 3

(18)

4.4 Qualitative Results

4.4.1 Results
The qualitative comparison with the baselines is shown in
Fig. 2 and the detail of the comparison is shown in Fig. 3.

4.4.2 Analysis and Evaluation
Our DfD-SC-Depth method visually obtains the depth maps
closest to the ground truth. DfD-SC-Depth can protect the
sharper edges for the estimated depth maps and get more
accurate depth for the area far from the camera compared
with SC-Depth. DfD-SC-Depth can also modify some appar-
ent errors in the depth maps of the DfD model.

Our method can successfully capture edges of the doors,
walls, windows in Row 1, 4, 5 of Fig. 2, and the details are
shown in Fig. 3; while SC-Depth leads to blurring artifact
and DfD method leads to aliasing artifact.

Our DfD-SC-Depth can also preserve the shape of objects
in the images. For example, we can tell from the chairs and
tables obtained by our method easily in Row 1, 6 of Fig. 2.
However, it’s difficult to point out where the chairs are in
depth-maps obtained by DfD and SC-Depth in Row 1 of Fig.
2.

SC-Depth sometimes might fail to accurately get the
depth for the area far from the camera. For example, in
Row 2, 3, 4 of Fig. 2, the deepest regions of the SC-Depth’s
depth map are much different from the ground truth, but
our method’s results are almost consistent with the ground
truth in these regions.

There are some apparent errors in the depth map of the
DfD method, such as the right-bottom of Row 2 of Fig. 2 and
right-top of Row 7 of Fig. 2. Fortunately, our DfD-SC-Depth
can also effectively modify these artifacts.
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Fig. 2. Qualitative comparison with baselines

4.5 Quantitative Results

4.5.1 Results

The quantitative comparison with baselines is shown in
TABLE 2.

TABLE 2
Quantitative comparison with baselines

SC-Depth DfD DfD-SC-Depth

RMSE ↓ 0.399 0.426 0.372

AbsRel ↓ 0.214 0.215 0.198

Log10 ↓ 0.089 0.102 0.095

a1 ↑ 0.682 0.649 0.688

a2 ↑ 0.828 0.830 0.846

a3 ↑ 0.927 0.916 0.923

Fig. 3. Qualitative comparison with baselines

4.5.2 Analysis and Evaluation
As shown in TABLE 2, the RMSE, AbsRel, a1, and a2 of our
proposed DfD-SC-Depth method are much better than the
baselines. However, Log10 and a3 of SC-Depth are a little
better than our method, which might be caused by the fact
that SC-Depth can yield fewer points that deviate too far
from the ground truth. However, our approach can achieve
better accuracy overall.

5 CONCLUSION

5.1 Limitations and Future Work

First, this method is sensitive to the learning rate since
there is no ground truth for training data, and the reference
depth is generated by the predicted depth and pose. So if
the learning rate is too large, the model might jump in the
wrong direction.

Second, we use the coded defocus images generated
by RGBD images. And since the size of densely labeled
images we can acquire is very limited, our experiment isn’t
conducted on a significant number of unlabeled training
data as expected. Therefore, the final results may not reach
the best situation.

In the future, if we can use the phase-coded aperture
camera to capture videos, we will validate our method with
more training data. We also consider combining other types
of video consistency information with depth from defocus
methods.

5.2 Conclusion

We successfully applied unsupervised video-based train-
ing on depth from the defocus method. We experimen-
tally demonstrate that our approach produces better per-
formances than the baseline on the NYUv2 dataset. Even
though the improvement is relatively slight, the method is
still inspiring. Using the phase-coded aperture camera to
capture videos or continuous images, we might improve
the models without extra depth information. That ensures
the method is feasible for real-life applications and can be
widely applied to specific scenes.
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