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1. Abstract

Amplified MRI (aMRI) has been introduced recently as
a new brain motion detection and visualization method,
which enables one to dramatically amplify the brain tis-
sue response due to blood pulsation and Cerebrospinal
Fluid (CSF) motion. One limitation of aMRI is its
sensitivity to noise. In this work, we evaluated the
performances of different denoising algorithms, namely
Non-Local Means (NLM), Block-Match and 3D Filtering
(BM3D), and DnCNN for their ability to improve aMRI
output in the present of different noise levels. Our anal-
ysis shows that even dough BM3D offered the highest
PSNR and SSIM scores, there were no significant differ-
ences among the three algorithms, and that aMRI itself act
as a strong denoiser.

2. Introduction

The physiological and biomechanical response of the hu-
man brain in vivo is thought to be altered in various neu-
rological disorders [1, 2]. Thus, the ability to observe the
manifestation of these disorders in the form of altered brain
motion is thought to be of great interest.

Recently, amplified Magnetic Resonance Imaging
(aMRI) has been introduced as a new brain motion detec-
tion and visualization method [3, 4, 5] which enables one to
dramatically amplify the brain tissue response due to blood
pulsation and Cerebrospinal Fluid (CSF) motion. aMRI
takes as an input a ‘cine’ MR data and uses phase based
motion magnification algorithms [6] to reveal the sub voxel
motion of brain tissue. The algorithm performances are de-
pended on the assumptions that the motion is sub-voxel and
that the noise in the data is relatively low. Therefore, in
the present of noise, motion artifacts can occur, which ul-
timately can lead to inaccurate diagnoses in patients. As a
result, reducing the noise level in the data before applying
the amplification algorithm is of great importance.

Several algorithms have been proposed for MRI denois-
ing. For example, MRI denoising using Non-Local Means
[7], which denoise the image by taking the mean of all pix-
els in the image, weighted by how similar these pixels are
to the target pixel. In addition, Block Matching and 3D Fil-

Figure 1. Flow diagram of the proposed project

tering (BM3D) [8], which is enhanced technique of Non-
Local Means filtering. Where instead of taking the mean
of similar patches, a discrete wavelet transformation is ap-
plied, which result in sparse representation [9, 10]. The De-
noising is achieved by shrinking (removing high frequency
noises) the sparse spectrum, and inverse back to the image
domain. Recently learning based approaches have been in-
troduces. One of them is multi-channel residual learning
of convolutional neural network (MCDnCNN) [11], which
uses the basic DnCNN [12] algorithm, with multi-channel
to denoise three dimensional MR images. Most of the de-
noising techniques in MRI were developed for a static MRI
images, and do not take advantage of the spatio-temporal
correlation among different frames. A recent conference
paper by [13] was testing the combination of temporal and
spatial denoising methods for cine MRI. In thier work, the
temporal denoising was based on signal processing using
the features of the noise, and the spatial denoising was per-
formed for each frame by unsupervised network.

In this work, we evaluated the effects of different denois-
ing algorithms, namely Non-Local Means, Block-Match
and 3D Filtering (BM3D), and DnCNN for their ability to
improve aMRI output in the present of different levels of
noise.

1



3. Background/Related Work

Visualization of pulsatile brain motion with striking de-
tails was only recently achieved by amplified Magnetic Res-
onance Imaging (aMRI) [3, 4, 5]. several methods have
been introduced in the past, among them Phase-contrast
MRI, which enables direct measurements of the velocity
blood and CSF flow [14], and a more recent quantitative
tissue motion imaging technique, Displacement Encoded
imaging with stimulated echoes (DENSE) MRI, which en-
codes tissue displacement in the phase of the stimulated
echo [15]. aMRI can be viewed as a complementary method
to both, because it enable the visualization of both CSF and
brain tissue motion with great contrast, but does not enable
direct quantification of the motion field.

As mentioned in the introduction section, most of the
MRI denoising techniques [7, 8, 11] were developed for a
static MRI data. A recent paper, by Peng [16] used Non-
Local Mean to denoise ’cine’ MRI data slice by slice, which
is similar to the approach we adopted in this work. Another
work by by Tsubasa [13] took this approach one step further
and combined temporal and spatial denoising methods, in
order to take advantage of the spatio-temporal correlation
among the frames in the ’cine’ MRI data.

In this work, we adopted the first approach used by [16],
where each frame is independently denoised. A far as we
know, this is the first time different denoising algorithms
are tested for their ability to improve aMRI performances.

4. Method

4.1. Motion Magnification

aMRI is based on the Eulerian perspective for the flow
field, where the properties of a voxel of fluid, such as pres-
sure and velocity, evolve over time. This differs from the
Lagrangian perspective, where the trajectory of particles is
tracked over time. In the Eulerian approach to motion mag-
nification, the motion is not explicitly estimated, but rather
magnified by amplifying temporal intensity changes at fixed
voxel [4, 5], assuming that the motion is subtle (sub-voxel).

aMRI starts by decomposing the data into scales and ori-
entations using the 2D steerable pyramid (Fig 2). The scales
(levels) basis functions are band pass filters in the frequency
domain. They are calculated in polar coordinates by multi-
plying a low pass filter Ls−1 of the previous scale with a
high pass filter Hs of the current scale. The low pass and
high pass filters for each scale are given by the following
equations:
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Where s is the scaling factor of the level, and the band
pass filter for the level is given by,

Bs(r) = Hs(r)× Ls−1(r) (3)

The angular filters satisfy the following equation in the
frequency domain:

Bj(kx, ky) =
(αjkx + βjky)

2

k2x + k2y
, (4)

j = 0, 2, 1, 3
Where αj = cos(θj), βj = sin(θj) , and θj = jπ/3.

The resulting filter in the frequency domain for each level
and orientation is given by:

As,j(kx, ky) = Bs(r)×Bj(kx, ky) (5)

Where, r =
√

k2x + k2y
And every scale and orientation in the decomposition is

constructed as follow:

Is,j(x, y) = F−1

{
F
{
I(x, y)

}
×As,j

}
(6)

Where s and j are the scaling factor and orientation di-
rection respectively, F

{
I(x, y)

}
is the Fourier transform of

the image, and F−1 is the inverse Fourier transform. The
steerable pyramid decomposition outputs a complex num-
ber (amplitude and phase) at each scale and orientation. The
phases are temporarily band-passed in order to isolate the
cardiac temporal frequency and to remove any DC com-
ponent. In addition, in order to enable motion magnifica-
tion with minimal noise artifacts, the band-passed phases
are spatially filtered with an amplitude-weighted Gaussian
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Figure 2. The amplification algorithm described by Wadhwa et al.
[6], as applied to MRI cine data. (A) The cine MRI (short video)
is decomposed by the complex steerable pyramid into scales and
orientations. (B) The phases are independently temporally filtered
at each spatial location, orientation, and scale. (C) The filtered
phases are spatially filtered again to increase the phase SNR using
amplitude-weighted Gaussian spatial smoothing. (D) The filtered
phases are multiplied by an amplification parameter and added
to the original phase components, and finally the video is recon-
structed (E)

smoothing filter. Next, the band-passed phases are multi-
plied by a user-defined amplification factor, α, and added to
the original phase component. Attenuation of motion of the
other temporal frequencies is achieved by adding the band-
passed phases to a reference phase image, which in our case
was chosen to be the first image. The movie is then recon-
structed to synthesize an amplified movie with the desirable
range of temporal frequencies.

I this work, the same parameters as in the original paper
[4] were used as a based line: amplification factor α = 15,
band-pass filter of the heart rate frequency (±0.1) in addi-
tion to attenuating the motion related to all other temporal
frequencies, and amplitude-weighted Gaussian smoothing
with σ = 5. This parameters supports sufficient amplifica-
tion and with minimum artifacts and distortions.

4.2. Denoising

4.2.1 Non-Local Means

The Non-Local Means (NLM) algorithm was first propose
by Buades et al. [17], and is based on the fact that natural
images have some self spatial similarity. In this approach
the image is denoised by taking the mean of all pixels (or
patches) in the image and weighted them by how similar
they are relative to the target pixel. The weights are Gaus-
sian function of the similarity between patches, and the its
measured as the L2 norm of the patch and target pixels. This
results in different weighting for different patches, where
high similarity result in greater weight and vice versa.

4.2.2 Block Matching and 3D Filtering

The BM3D [9, 10] is an extentios of the Non-Local Means
algorithm, where instead of taking the mean of all similar
patches a 3D matrix is constructed, and decomposed by a
3D unitary sparsifying transform. The sparse representa-
tion is then threshold and Weiner filtered in order to achieve
coefficient shrinkage to remove high frequency noises. The
filtered block is then inverse transform which result in a de-
noise 3D block. The denoise target patch is then estimated
by taking the weight-averaged of all patches is the block.
In both Non-Local Means and BM3D the algorithm perfor-
mance depends on the size of the searching window, and
other hyper parameters.

4.2.3 DnCNN

DnCNN [12] is a denoising convolutional neural networks
that estimate the noise (residual image) from the Gaussian
noisy input image. The denoise image is estimated by tak-
ing the difference between the noisy image and the residual
(noise) image. The algorithm utilized residual learning and
batch normalization to improve the denoising performance
and to speed up training. In addition, compared to other
models, which usually train to denoise an image with spe-
cific additive white Gaussian noise level, DnCNN model is
able to handle Gaussian denoising with unknown noise level
(i.e., blind Gaussian denoising) [12].

5. Analysis & Evaluation

MR images are reconstructed from the sampled complex
spatial frequency data, and as a result the image itself is
complex in nature. The input to the aMRI algorithm are the
magnitude images of the original complex images. When
taking the magnitude of the complex images, the noise dis-
tribution is changing. In the complex representation, both
the real and the imaginary parts contain additive zero-mean
Gaussian noise, so the magnitude image noise distribution
is no longer Gaussian, but rather Rician [18].

In this work, we used Non-Local Means, BM3D and
DnCNN algorithms to denoise the MRI videos. Because
the aMRI algorithm has denoising elements in it (amplifica-
tion and amplitude weighted Gaussian smoothing) the NLM
and BM3D were tested with default parameters (the search
window size for similar patches was set to 21 pixels, and the
comparison window size was set to 5 pixels). We chose this
approach, because this preliminary work was mainly focus
on testing the general effect of denoising algorithms on the
aMRI performances, and not on optimizing their hyper pa-
rameters.

The amplify videos were evaluated qualitatively and
quantitatively. Qualitative analysis was done by visually
comparing the amplify denoised videos, and by generat-
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ing normalize temporal standard deviation (STD) maps to
enable the observation of motion artifacts and noise in the
form of 2D images. Quantitative analysis was done by cal-
culating the peak signal to noise ratio (PSNR) and the struc-
tural similarity Index (SSIM) between each of the frames in
the amplified denoised video and the reference video (am-
plification without noise). The PSNR and SSIM scores were
calculated over the brain tissue, excluding the background.

We started by adding Rician noise, with varying S pa-
rameter (ranging from 0 - 0.1) to the original video, result-
ing in a noisy video. The noisy video was then denoised
using the three denoising algorithms (Non-Local Means,
BM3D and DnCNN). For reference, we first computed the
PSNR and the SSIM scores between the denoised video
and the original video. We continued by amplifying the
denoised videos using the aMRI algorithm, and analyzed
the resulting videos using the metrics defined above (PSNR,
SSIM and STD maps).

For the next analysis a single Recian S = 0.025 factor
was tested. This factor was chosen empirically. We visually
noticed that when using the default aMRI parameters as in
the original paper, the motion in the amplified videos for
S > 0.02 contain significant amount of motion artifacts.
As a result, we wanted to test different amplification fac-
tors ([2.5 - 20]) and thier effect on the performances of the
denoising algorithms for a fixed S parameter. The result-
ing videos were compared in the same fashion mentioned
above.

Finally, we tested the effect of the amplitude Gaussian
smoothing filter on the performances of the denoising algo-
rithms for a fixed S = 0.025 parameter, by varying sigma
([2.5 - 15]). We then compared the the resulting videos in
the same fashion mentioned above.

6. Results
6.1. Denoising Without Amplification (Reference)

We started by evaluating the performances of the denois-
ing algorithms without applying any magnification. Table 1
shows the temporal mean PSNR and SSIM for Rician noise
S = 0.025 parameter, and for each of the denoising meth-
ods. As can be seen, BM3D got significantly higher scores
(PSNR 36.683 & SSIM 0.959) for both evaluation measure-
ments, compared to NLM and DNCNN which got PSNR
score of 33.705 and 34.157, and SSIM score of 0.921 and
0.920 respectively.

denoising Algorithm Mean PSNR Mean SSIM
Non-Local Means 33.705 0.921

BM3D 36.683 0.959
DnCNN 34.157 0.920

Table 1: Mean PSNR and SSIM for Rician noise factor of
S = 0.025 for the three denoising algorithms without

applying magnification

Figure 3 & 4 depict the PSNR and SSIM scores for each
of the denoising methods as a function of the Rician noise S
parameter. As can be seen, the BM3D algorithm performs
the best over the varying S parameters, although for large
level of noise (S = 0.1) DnCNN and BM3D the PSNR
scores are almost the same.

Figure 3. PSNR score as a function of Rician noise S factor for the
three denoising algorithms without amplification

Figure 4. SSIM score as a function of Rician noise S factor for the
three denoising algorithms without amplification

Figure 5 & 6 depict anatomical snapshot, and the nor-
malize temporal standard deviation maps of the original
cine MRI, and the denoised videos for Rician noise level
S = 0.025. The largest PSNR score (36.683) was obtained
by BM3D, although visually the DnCNN result looks better
(subjectively). In addition, compared to the reference STD
maps, large amount of variation was observed for all the
three algorithms.

6.2. Denoising with Amplification

The next step was to evaluate the performances of the
denoising algorithms after amplification. Table 2 shows the
mean PSNR and SSIM for Rician noise S = 0.025 parame-
ter, and for each of the denoising methods. As can be seen,
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Figure 5. Anatomical snapshots of the denoised videos without
amplification

Figure 6. Normalize temporal standard deviation maps for Rician
factor of S = 0.025 of the denoised videos without amplification

compared to the non-amplified results there is an improve-
ment in the PSNR score for NLM and DnCNN, but reduced
PSNR score for BM3D. Notice that the PSNR and SSIM
scores for the three denoising algorithms are not significant
different. Also notice, that the PSNR and SSIM scores for
the reference video (noisy amplified video) are significantly
smaller compared to the scores obtained after the denoising
algorithms.

denoising Algorithm Mean PNSR Mean SSIM
Noisy Video (reference) 34.078 0.941

Non-Local Means 34.517 0.949
BM3D 34.599 0.950

DnCNN 34.374 0.948
Table 2: Mean PSNR and SSIM for Rician noise factor of

S = 0.025 for the three denoising algorithms after
magnification

Figure 7 & 8 depict the PSNR and SSIM scores for each
of the denoising methods as a function of the Rician noise
S parameter. As can be seen, for S > 0.02, the PSNR
and SSIM scores for the noisey video are smaller compared
to the denoising results. Surprisingly, for S < 0.025 the
scores for the noisy and denoised videos is almost identical.
Another surprise is the fact that the PSNR scores for the
three denoising methods are almost the same for all S fac-
tors. The SSIM plot almost exhibit the same trend, although
here the DnCNN and BM3D are a bit superior to Non-Local
Means.

Figure 9 depicts the normalize temporal standard devia-
tion maps of the amplify denoised videos for Rician noise
level S = 0.025. The overall motion characteristic in the

Figure 7. PSNR score as a function of Rician noise S factor for the
three denoising algorithms with amplification

Figure 8. SSIM score as a function of Rician noise S factor for the
three denoising algorithms with amplification

brainstem (midbrain, pons, and medulla) together with the
lateral ventricles is comparable with the reference standard
deviation map (amplification without noise addition) for all
the three denoisisng methods. contrary, large noise level
can be observed in the cortex area in all the three denoising
STD maps. This noise appear in the magnified movies as
mixture of noise and motion artifacts (all the results for all
the experiments can be generated using the code and data in
the GitHub repository).

Figure 9. Normalize temporal standard deviation maps for Rician
factor of S = 0.025 of the denoised videos with amplification
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6.3. Varying Amplification Factor

As mentioned in the motion magnification section, mo-
tion artifacts can occur when the magnification factor is too
large, which in turn will affects the qualitative and quantita-
tive scores. Therefore, the affect of different amplification
factor on the PSNR and SSIM scores was tested. Figure 10
& 11 depict the PSNR and SSIM scores for each of the de-
noising methods as a function of amplification factor. As
can be seen, for fix noise level (S = 0.025) the BM3D al-
gorithm exhibit the best scores for both measurements, but
with minimal difference among the three methods. In ad-
dition, the PSNR plot exhibit a peak at 7.5 amplification
factor for all denoising algorithms (including the reference
data). Another observation worth paying attention to is the
fact that the SSIM score remain constant (more or less) up
to amplification factor of 7.5, and then starts to decrease.

Figure 10. PSNR score as a function of amplification factor for the
three denoising algorithms

Figure 11. SSIM score as a function of amplification for the three
denoising algorithms

Figure 12 depicts the normalize temporal standard devi-
ation maps of the amplify denoised videos for Rician noise
level S = 0.025, and for amplification factor of 7.5 (the
magnification with the largest PSNR). As before, overall the

motion characteristic in the brainstem (midbrain, pons, and
medulla) together with the lateral ventricle for all the three
denoisisng methods is comparable with the reference stan-
dard deviation map (amplification without noise addition).
Even dough the cortex in all of the denoising STD contains
a lot of noise, for this magnification factor, the noise does
not appear as motion artifact in the magnified videos, but
rather as a pure temporal noise.

Figure 12. Normalize temporal standard deviation maps for ampli-
fication factor of 7.5 for the denoised videos

Table 3 shows the PSNR and SSIM scores for amplifi-
cation factor of 7.5 for the three denoising methods. As
can be seen, there is a significant improvement in the PSNR
and SSIM scores for the three methods, compared to both
the noisy amplified and not-amplified results with a fixed S
factor of 0.025, but not significant difference among them.

denoising Algorithm Mean PNSR Mean SSIM
Noisy Video (reference) 35.838 0.957

Non-Local Means 36.113 0.964
BM3D 36.314 0.966

DnCNN 36.174 0.964
Table 3: PSNR and SSIM score for amplification factor of

7.5 for the three denoising algorithms

6.4. Varying Sigma Parameter

As we saw in the motion magnification section, one way
to mitigate motion artifact in the resulting amplified videos
is using an Amplitude-Weighted Gaussian Filter. In this
part, we wanted examined the affect of the Gaussian vari-
ance on the PSNR and SSIM scores. Figure 13 & 14 depict
the PSNR and SSIM scores for each of the denoising meth-
ods as a function of different sigma values, for a fixed noise
level (S = 0.025). As can be seen, the BM3D algorithm ex-
hibit the best scores for both measurements, but with not
significant difference. In addition, notice that the scores
grow with larger sigmas due to the affect of smoothing. This
of course come on the expense of losing motion information
(Fig 15).

Figure 15, depict the normalize temporal standard devi-
ation maps for sigma of 7.5 for the denoised videos. We
chose to display the result with sigma of 7.5, because we
noticed that for sigma values greater than 7.5 we start to
loose some of the motion information due to the large affect
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Figure 13. PSNR score as a function of sigma values for the three
denoising algorithms

Figure 14. SSIM score as a function of sigma values for the three
denoising algorithms

of smoothing. As can be seen, the motion in the brainstem
(midbrain, pons, and medulla) together with the lateral ven-
tricle is almost identical to the reference video for the three
denoising methods. Even dough the cortex is still noisy,
the output videos exhibit enough magnification with some
small motion artifacts.

Figure 15. Normalize temporal standard deviation maps for sigma
of 7.5 for the denoised videos

Table 3 shows the PSNR and SSIM scores from sigma
value of 7.5 for the three denoising methods. As can be
seen, there is a significant improvement in the PSNR and
SSIM scores for the three methods, compared to the noisy

amplified video with the same Rician noise S factor, but
now significant difference was observed among the denois-
ing methods.

denoising Algorithm Mean PNSR Mean SSIM
Noisy Video (reference) 34.304 0.945

Non-Local Means 34.771 0.953
BM3D 34.904 0.956

DnCNN 34.725 0.953
Table 4: PSNR and SSIM score for sigma of 7.5 for the

three denoising algorithms

7. Discussion & Conclusion
This work was tested the effects of three well known

denoising algorithms, Non-Local Means (NLM), Block-
Match and 3D Filtering (BM3D), and DnCNN and their
ability to improve the performances of amplified Magnetic
Resonance Imaging (aMRI) in the present of different noise
levels. The focus of this work was to test the general effects
of denoising algorithms on aMRI performances. As a re-
sult the algorithms were tested with default parameters, and
without hyper parameters optimization. Normalize tempo-
ral standard deviation maps, PSNR and SSIM scores were
used to evaluate the performances of the denoising algo-
rithms.

We started first by denoising the videos without apply-
ing magnification as a reference baseline. The results (Fig
3 & Fig 4) showed that BM3D was most successful in noise
removal, especially for low level of noise (S < 0.02). The
PSNR and SSIM scores (Table 1), show the superiority of
BM3D over NLN and DnCNN. It is important to mentioned
that the DnCNN algorithm was trained on natural images
with Gaussian noise, but as mentioned in the Analysis and
Evaluation section, the magnitude MR images are charac-
terized by Rician noise. That could explain the low level
performances of the DnCNN compared to BM3D. Another
important observation is the residual remaining temporal
noise (Fig 6) in the denoised videos. This residual noise is
mainly due to the facts that each frame was denoised inde-
pendently, and did not take into account the spatio-temporal
correlation among the frames.

For our the second analysis, the denoised videos were
amplified using aMRI with default parameters. Her, the re-
sults (Fig 7 & Fig 8) were a bit surprising. For noise level of
S < 0.02 there were very little PSNR and SSIM scores dif-
ference among all denoising method including the reference
video (magnification without denoising). These suggest that
that the aMRI algorithm itself act as a denoiser. This can be
explained by the following:

1. In the phase based motion magnification approach,
while the amplification factor is increased, noise is
translated rather than amplified, which result in larger
SNR.
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2. The amplitude weighted Gaussian smoothing filter,
further increase the SNR.

3. Attenuating other temporal frequencies, further reduce
the noise and increase the overall SNR.

For larger level of noise (S > 0.02) a difference in PSNR
and SSIM score between the reference video and the de-
noising videos was observed, but surprisingly there was not
significant difference among the denoising algorithm. This
is especially surprising, because the first analysis (denoising
without amplification) showed difference, which apparently
did not propagated to the amplified outputs. This suggests
that the overall denoising affects of aMRI are stronger than
those of the denoising algorithms. The STD maps (Fig 9)
showed that the motion in the mid-brain region in the ampli-
fied denoised outputs is comparable to the reference video,
but contain a significant amount of noise in the cortex. High
level of noise (S > 0.02) resulted in non realistic motion
apparent in the amplified output. This can lead to misinter-
pretation in future disease diagnosis using aMRI.

In the third analysis, the denoised videos were amplified
using different amplification factor. The results (Fig 10 &
Fig 11), showed that the PSNR and SSIM score depends on
the amplification factor. The PSNR was growing with the
amplification factor, and exhibit a peak at α = 7.5. This
shows again the denoising affects aMRI has, and that they
are stronger then the denoising algorithm affects. In ad-
dition, compared to the previous section, the PSNR score
increased in all three algorithm by almost 2dB, but yet min-
imal differences was observed among them.

In our last analysis, the denoised videos were amplified
using different sigma parameters in the amplitude based
Gaussian smoothing. As expected increasing the sigma re-
sulted in better PSNR and SSIM scores (Fig 13 & Fig 14),
but also resulted in lower motion detection resolution. The
STD maps (Fig 15) showed that sigma = 7.5 resulted in mo-
tion resolution similar to the reference video. As before,
we noticed that the PSNR and SSIM scores (Table 4) for
all denoising methods is better then the reference video, but
almost the same among them (0.02 db differences between
BM3D and NLM and DNCNN).

In this work we tested the effects of different denos-
ing algorithm on aMRI performance. Our analysis sug-
gests that there is a benefit for applying denoising algo-
rithm before using aMRI (PSNR increased in around 0.5
dB compared to the reference noisy video). In addition, our
analysis shows that even dough BM3D offered the high-
est PSNR and SSIM scores, there were no significant dif-
ferences among the three algorithms, and that aMRI itself
act as a strong denoiser. Future work will need to test this
claim further, by first optimizing the algorithms hyper pa-
rameters, and by adopting spatio-temporal denoising algo-
rithms, which take into account the correlation among the

video frames. This is especially of great importance, be-
cause as observed the denoised videos contained a lot of
residual temporal noise, which suggests that the denoise re-
sults can be improved further. In addition, testing different
deep learning algorithms which was trained on brain MRI
images with Rician noise (compared to DnCNN) will prob-
ably improve the results significantly.
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