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Abstract—The emergence of new sensors that provide the capability for on sensor computation opens doors to new imaging
algorithms. Some of the most common tasks in the imaging and computer vision world have been tackled using convolutional neural
networks. However, large model sizes make it impossible to run on the sensors with limited memory. Binary neural networks offer a
promising approach to compressing networks to sizes that allow the weights to be fully stored on the sensor. In this study, we look into
one of the most challenging problems in training binary neural networks, how to deal with the gradient during backpropagation. We
present comparisons and studies changing different parameters such as gradient estimators, kernel size, layer numbers, and network
depth to try to train quantized networks with comparable performance. However, there is still a large gap between the full precision
networks and binary networks. More research into gradient estimation and architecture search is needed to make running CNNs on
these sensors a reality.

Index Terms—Computational Photography
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1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have be-
come ubiquitous in many computational imaging

tasks. However, these can take ample time to run and large
amounts of memory to store the models. For example, VGG-
16 requires over 500 MegaBytes of memory to store the
weights. Recently, with the advancement of 3D fabrication
and wafer level bonding, there’s been an emergence of
sensors, such as Sony’s new stacked CMOS sensor with 2-
layer transistor pixels, with pixels that have nearly 100%
fill factor and in per pixel circuitry. Together this allows
for computation to be pushed onto the focal plane. This
opens doors for new clever imaging algorithms. On sensor
computation also allows for us to extract only the salient
information, giving not only speedups up, but also to tackle
the limited bandwidth problem when it comes to transfer-
ring data. However, with a limited memory capacity, such
state-of-the-art CNNs would not be able to be stored on the
sensor. Network compression becomes a crucial problem.

In the past few years, researchers have started look-
ing into binary networks or highly quantized networks to
achieve tasks such as image classification or object detection.
Through binarization, each weight would be represented
with a single bit, as opposed to the full 32-bit floating point
precision case. The main challenges that come from training
quantized networks is that with non-differentiable functions
such as the sign function that would binarize weights to
-1 and 1, or the rounding function for more bits, back
propagation becomes difficult. One way to approximate the
gradient is through various gradient estimation techniques.
In this work, we perform a survey of gradient estimators,
training a simple architecture for image classification on the
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Fig. 1. The sign function binarizes our values to -1 or 1. However, it is
non differentiable. Its derivative is 0 or undefined everywhere.

Fig. 2. Examples of CIFAR10 dataset images [1] we train and test on.

CIFAR-10 image dataset [1]. We want to distill the effect of
the estimators and see trade-offs between memory footprint
and classification precision.

2 RELATED WORK

Network compression techniques fall into roughly five cat-
egories: 1. parameter reduction by pruning redundancy,
2. low rank parameter factorization, 3. carefully designing
structured convolutional filters, 4. creating smaller models,
and 5. parameter quantization, which is the technique we
work with here. The most extreme form of parameter quan-
tization is by binarizing networks. Naive approaches quan-
tize weights after training, which gives limited performance.
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BinaryConnect by Courbariaux et. al. [2] was one of the
first to train a deep neural network (DNN) using binary
weights. They quantize in the forward pass, and during
backpropagation, they use the straight-through-estimator
(STE) which will be detailed in the Methods section. Here
they keep full precision activations while the weights are
binary. With binary weights and 32-bit precision activations,
there is no longer a need for full precision multiplications,
just full precision accumulation. Binary Neural Networks
(BNNs) either quantize just the weights or both weights
and activations, the latter of which is more popular since
it allows for more compression. Pioneering followup works
include Binarized Neural Networks (BNNs) [3] and XNOR-
net [4]. XNOR-net presented the importance of binary en-
coding. Using -1 and 1, as opposed to 0 and 1 allowed for
turning convolutions into XNOR and bit-counting opera-
tions. Turning networks binary this way not only uses 32
times less memory, but computational, there is a 58 times
speedup since there is no longer the need for heavy floating-
point multiplication and addition. There have been studies
on the rate of oscillation between -1 and 1 [5] as the learning
rate changes, the introduction of a gain term [6], using
multiple bases and a learned bias for thresholding [7], and
looking into alternatives to STE [8], [9], [10]. In addition, in
the past few years, many bodies of work in the BNN and
quantized neural network (QNN) space have been coming
out [11], [12], [13], [14], [15], and [16].

3 METHOD

As suggested by [4], we use the -1/1 encoding. The quanti-
zation function in this work follows that of the predecessors.

xb = sign(x) (1)

where xb is the binarized value. We do a study of differing
levels of compression, a) binarizing solely the weights, and
b) binarizing both weights and activations. The binarization
function 1 is non differentiable. Everywhere, the gradient is
0 except for at 0, where the gradient is undefined. The sign
function and gradient are in figure 1. To enable training,
we must deal with the non-differentiability carefully. To
perform this study, we use a base network architecture
and swap in gradient estimators to try to find the best
approximation. The pipeline is shown in figure 3.

3.1 Base Network Architecture

In the base network architecture, shown in figure 5, we have
a simple 2 convolutional layer and 3 linear layers network
with max pooling layers after each convolutional layer to
perform image classification on the CIFAR-10 image dataset
[1]. A sample of CIFAR images is shown in figure 2. The
details of the model architecture are shown in figure 3. In
each comparison, we write a custom convolutional layer
module that uses the sign function 1 in the forward pass and
we implement one of the gradient estimators in the back-
ward pass. In the CIFAR-10 dataset, there are 10 categories
of images, so we train with a Cross Entropy Loss for 300
epochs using the SGD optimizer in Pytorch, a momentum
of 0.9 and weight decay of 1e-4. The starting learning rate for
each model is tuned for each model for best performance,

but a cosine annealing of the learning rate is applied to the
training. We report the top-1 precision, meaning whether
our network correctly predicted the correct class. For a
baseline, we train the full precision model as well.

3.2 Gradient Estimators

Straight-Through Estimator (STE): The straight through
estimator essentially ignores the non-differentiability by by-
passing the binarization. The gradient through the binariza-
tion is set to the identity function.

δsign(x)

δx
= I (2)

In some cases, some variants only propagate the gradient if
the magnitude is less than 1.

δsign(x)

δx
≈

{
1 |x| ≤ 1
0 otherwise (3)

The gradients may get large, so sometimes the hard tanh
function is used to keep the gradients in a reasonable
range. Here, we simply send the incoming gradient to the
outgoing gradient via 3.

Second Order Approximation: In BiRealNet [10], Liu et.
al used a second order approximation of the sign function
given by

sign(x) ≈


−1 x < −1
2x+ x2 −1 ≤ x < 0
2x− x2 0 ≤ x ≤ 1
1 otherwise

(4)

The corresponding gradient estimator is then the following
piecewise function.

δsign(x)

δx
≈


2 + 2x −1 ≤ x < 0
2− 2x 0 ≤ x ≤ 1
0 otherwise

(5)

Using tanh(x) to approximate the sign function: There
are other works that approximate the sign function with
a differentiable function like the tanh function. The corre-
sponding gradient estimator is

δsign(x)

δx
≈ δtanh(x)

δx
= 1− tanh2 x (6)

Other approximations of the gradient: [8] and others have
looked to try to make a smoother delta function to approxi-
mate the shape of the gradient of the sign function.

δsign(x)

δx
≈

(
2

coshx

)2

(7)

In all cases, each model was trained using the same training
procedure, with the exception of some hyperparamter tun-
ing. The sign function approximations and corresponding
gradient estimators are shown in figure 4.
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Fig. 3. Pipeline: The overview of the pipeline for image classification with the modified convolutional layers. An image is inputted into the network
where the forward pass is the sign function and the backward pass is a gradient estimation function. The output of the network is a prediction of
what the label of the image is.

Fig. 4. Signs functions and gradient functions: On the top row, we show the approximation of the sign function with the corresponding gradient
estimators. In the first three cases, the gradient estimator comes from taking the derivative of the sign approximation. In the fourth case, the
gradient estimator approximates the gradient of the sign function. We show the corresponding sign function approximation for completeness. The
final method to binarize is through gumbel softmax, which treats -1 and 1 as categorical variables.

3.3 Memory Footprint and Precision Tradeoff

A goal for this study was also to see what insights we
could draw from increasing the depth of the binary net-
works to the same memory footprint as the full precision
network. To calculate the memory footprint, we followed
the same convention as previous BNN works. In the base
network, using 2 full precision convolutional layers with
input-channels/output-channels/kernel-size of 3/6/5 and
6/16/5, the total parameters without bias totaled to 2,850
parameters. Each parameter uses 32 bits, which gives a total
of 91,200 bits. On the other hand, the fully binary network
uses 1 bit per value, giving us 2,850 bits. This leaves us with
88,350 bits to add depth to our architecture. As reference,
6/6/5 convolutional layers has 900 bits, so we could add up

to 98 of these layers to the binary network.

3.4 Additional studies with complex architectures

We train several models with differing depths and kernel
sizes. Results are shown in table 2. In the base model,
we only have a few filters per layer. Simply adding more
layers may not be an effective way to increase precision.
In the deep learning community, architecture type plays
an important role in increasing precision. For an additional
study, we train a model from IR-Net [9] from scratch and do
comparisons between the gradient estimators on the more
complex architecture. The network architecture is shown
in figure 6. Some hyperparamter tuning was performed on
each model, but the training procedure stays the same.
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Fig. 5. Above is the base network architecture used in the first set of experiments. Here, we swap in each of the modified binary convolutional layers
with their corresponding gradient estimators. The linear layers are left at full precision.

Fig. 6. We take a model from IR-Net [9], swapping the gradient estimators in the binary convolutional layers. This architecture uses over 4 million
parameters.

The model from IR-Net’s paper we use consists
of 6 convolutional layers with input-channels/output-
channels/kernel-sizes of 3/128/3, 128/128/3, 128/256/3,
256/256/3, 256/512/3, and 512/512/3 with batch normal-
ization and a hard tanh nonlinearity applied after each
convolutional layer. The final layer is a single linear layer.
Note, the first convolutional layer and the last linear layer
are not binarized. The number of filters is much larger
than the base model we previously used, allowing for more
feature extraction. However, even with most of the weights
and activations fully quantized, the model requires over
4 million bits, which depending on the sensor, may be
difficult to use. We still perform the study to compare the
effectiveness of the estimator.

4 EXPERIMENTAL RESULTS AND DISCUSSION

The three sets of experiments are evaluated on the precision
of predicting the correct label.

Experiments on the base model: Table 1 shows the results
for the experiments on the base model. While the gradient
estimators achieved performance better than the naive
approach of just quantizing the weights after the network
is fully trained, there is still a large gap between the full
precision network and the binarized networks. The full
precision model had a 75.22% accuracy, while the top
estimators, the STE and tanh estimator, applied to the
weights performed with just under 60% accuracy. With
additional quantization of the activations, the performance
had an additional noticeable drop. Interestingly, the second
order estimator actually had a better performance when
both the weights and the activations were binarized. This
may indicate more hyper parameter tuning is needed, or
that in this space, we may have gotten stuck in a local
minima.

Experiments on increasing memory footprint: Several
models were created in this study to try to understand
the effects of each parameter. Number of filters, kernel
sizes, number of convolutional layers, etc. parameters were
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TABLE 1
Experiment 1: Interchanging gradient estimators on the base model

Reported percentages are the best trained with parameter tuning. IR-Net, BiRealNet ResNet50 were also trained with 87.6 and 83.9 accuracy
but they had very specific architectures and training procedures. This table only has comparable architectures to show the effect of the

gradient estimator.

Gradient Estimator/Model Weight/Activation (Bits) Convolutional Layers Memory Size Precision Top-1 %

None (Full Precision) / Base Model (BM) 32/32 91,200 bits 75.22
Naı̈ve: Quantized Weights at the End / BM 1/32 2,850 bits 11.86

Straight Through Estimator (STE) / BM 1/32 2,850 bits 59.98
Straight Through Estimator (STE) / BM 1/1 2,850 bits 53.00

Second Order Approximation / BM 1/32 2,850 bits 37.33
Second Order Approximation / BM 1/1 2,850 bits 52.22

Tanh estimator / BM 1/32 2,850 bits 59.44
Tanh estimator / BM 1/1 2,850 bits 51.46

2/coshx estimator / BM 1/32 2,850 bits 58.10
2/coshx estimator / BM 1/1 2,850 bits 51.23
Gumbel Softmax /BM 1/32 2,850 bits 58.05
Gumbel Softmax /BM 1/1 2,850 bits 34.71

TABLE 2
Experiment 2: Changing Memory Footprint

Gradient Estimator (and changes) Weight/Activation (Bits) Convolutional Layers Memory size Precision Top-1 %

STE(+ 50 conv2d layers) 1/32 47,850 bits 10.00
STE (+10 conv2d layers) 1/32 7,350 bits 9.99
STE (+5 conv2d layers) 1/32 1,026 bits 9.98
STE (+1 conv2d layer) 1/32 3,750 bits 32.72

STE (+1 conv2d layer, kernel size=3) 1/32 1,350 bits 28.53
STE (kernel size=3) 1/32 1,026 bits 54.17

STE (Increase output channels of covn2d to over 256) 1/32 414,400 bits 56.89

TABLE 3
Experiment 3: IR-Net architecture with different gradient estimates

Gradient Estimator Weight/Activation (Bits) Precision Top-1 %

IR-Net using the original decaying tanh estimator 1/1 87.89
IR-Net with static tanh estimator 1/1 77.23

IR-Net with STE 1/1 78.34
IR-Net with gumbel softmax 1/1 10.11
IR-Net with gumbel softmax 1/32 17.31

IR-Net with 2/coshx estimator 1/1 88.25
IR-Net with second order estimator 1/1 88.55

changed to see if there would be a direct relationship
between memory footprint and precision. See table 2 for
results. Experiments included adding 1 to 50 more 6/6/5
convolutional layers, and results showed none were able to
reach good performance. The models used the STE method,
which performed best in the previous study. Reported are
the best precisions done, though with deeper networks,
hyperparameter tuning becomes increasingly important
and difficult. Here, it seemed we reached a local minima
and across the board achieved about 10% accuracy, which
given the 10 categories, is the same as guessing. More work
needs to be done in this space. Changing kernel sizes to
3x3 instead of 5x5 gave comparable performance, but then
with the addition of just one more convolutional layer, the

accuracy dropped over 20%. Another experiment on the
number of filters, as opposed to changing the kernel size,
was done. Going from 3/6/5 and 6/16/5 to 3/64/5 and
64/256/5 gave comparable performance as well, but with a
larger memory footprint. With no definitive improvement
in tweaking these parameters, we thought it may be the
case that architecture together with the gradient estimator
and the training procedure play an important role, which
leads us to the third round of experiments.

Tailored architecture: Table 3 shows the results of the final
set of experiments. We kept the architecture detailed in IR-
Net and in the methods section. For each model, we changed
the gradient estimator. The accuracies across the board
are near 75-90%, with the exception of gumbel-softmax.
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Although trained with hyper paramter tuning, the 1 bit
weight and 1 bit activation version always got stuck around
10% while the 1 bit weight and full precision activation
reached 17%. As shown in the first set of experiments,
gumbel-softmax can achieve numbers near those of other
methods. But, gumbel-softmax is more finicky to train and
often takes many more iterations of parameter tuning. Here,
we see the architecture does play a large part in the accuracy.
However, as mentioned before, this model requires orders
of magnitude more memory. This leads to two main possi-
bilities: 1. continue looking for a better gradient estimator,
or 2. focus on architecture search for compressing network
architectures.

5 CONCLUSION, LIMITATIONS, & FUTURE WORK

Binary Neural Networks are essential for running on the
edge or on sensors. Here, we study different gradient es-
timators in hopes to train effective BNNs that are low in
memory. From the three sets of experiments, we conclude
these gradient estimators alone are not enough to obtain
good precision. Additional architecture search or specialized
training procedures were used which helped the accuracy
at the cost of memory footprint. Limitations: We were
limited in the number of gradient estimators we tested since
each model, with hyperparameter tuning and training for
300 epochs, was time intensive. More gradient estimators
should be tested for a thorough survey of all the methods
out there. The network architectures were also limited. Here,
we used the CIFAR10 dataset, but changing the task or the
number of possible categories will require new training and
new models. Future works include doing exactly this and
testing out every estimator or creating new functions that
look like a delta function of sorts to estimate the gradient.
Also, performing this architecture search in tandem with
improving gradient estimators to get light weight CNNs
with performances closer to the full precision networks,
or looking into other compression mechanisms would be
a good step to further the study.
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