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Reconstruct a Hyperspectral Image from a
Single Shot

Yixuan Shao

Abstract—Conventional hyperspectral imaging methods usually suffer from problems such as low temporal and spatial resolution,
requiring complicated and expensive optics, and low signal-to-noise ratio. In this project, by repeating the work in [1], I realize a
hyperspectral image reconstruction algorithm with high spatial and spectral resolution from a single shot. By placing a dispersive optic
in front of an conventional 3-channel camera, the PSF would be horizontally dispersive and there would be dispersion at edges. With
the prior knowledge of small total variation and spectral smoothness, reconstructing the hyperspectral image from dispersion at the
edges is formed as a 3-step inverse problem. Solving the inverse problem using the conjugate gradient method and alternating
direction method of multipliers, I reconstruct the spectra from 430 to 650 nm with 10 nm intervals. The results analysis show that the
algorithm produces hyperspectral images with both high PSNR and low spectral error, and is robust under a high noise level.

Index Terms—Hyperspectral Imaging, Inverse Problem, Computational Photography
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1 INTRODUCTION

H YPERSPECTRAL analysis is useful in many applica-
tions such as material classification, remote sensing,

biomedical diagnosis, and image segmentation [2], [3], [4].
However, most modern cameras only have three color chan-
nels and can only provide very coarse information about the
full spectrum. For example, two materials can display the
same color but consist of quite different spectra [5].

Existing hyperspectral imaging methods, such as using a
set of band-pass filters [6], [7], a mask and collimating optics
[8], are usually bulky, expensive, and suffer from low spatial
resolution or temporal resolution. So these methods are not
affordable or practical for ordinary customers.

To avoid these problems, in this project I repeat a novel
single-shot hyperspectral imaging technique proposed in
[1]. This technique only needs to place a prism in front
of a conventional 3-channel DSLR camera to generate dis-
persion, and use a compressed-sensing-based algorithm to
reconstruct the hyperspectral image. This algorithm doesn’t
sacrifice spatial or temporal resolution for spectral informa-
tion. All it needs is a prism and conventional 3-channel
DSLR camera, which are cheap. We could reconstruct the
full-size hyperspectral image from a single shot and produce
a corresponding RGB image with the full resolution of the
imaging sensor.

The major procedures of the hyperspectral image recon-
struction algorithm are summarized in Fig. 1. As we place a
dispersive prism in front of the camera, the captured image
is a dispersed RGB image, as shown in (b). We can see some
dispersion at the edges of the two lemons, which contains
cues of the spectra. So the remaining steps are inferring the
spectra of the whole image from the edges. I first align the
captured image based on the image formation model, and
we get (c). Then I apply an edge detector to extract the
edge pixels which contain more spectral information than
interiors, as (d) shows. Afterward, I extract the spectra at
edges in the gradient domain, and finally reconstruct the
hyperspectral image from it. (g) shows the spectra of the
fake lemon and the real lemon. We can see there are more

long-wave components in the reconstructed spectrum of the
real lemon, which accords with the ground truth spectrum.
Therefore, we can discriminate different materials based on
this hyperspectral image reconstruction algorithm.

(a) (b) (c) (d)

(e) (f) (g)

Real 

lemonFake lemon

Fig. 1. By adding dispersion to the image formation process, we could
reconstruct the hyperspectral images with both high spatial resolution
and high spectral accuracy. (a) RGB version of the raw image. (b)
Captured dispersed RGB image. (c) Aligned image in RGB color space.
(d) Detected edge based on the aligned RGB image. (e) Reconstructed
hyperspectral image in each wavelength channel. (f) Recovered image
in RGB color space. (g) Comparison of the reconstructed spectra and
ground truth spectra of the fake lemon and the real lemon in red
rectangular regions in (f).

2 RELATED WORK

Filter-based hyperspectral imaging. A straightforward way of
obtaining hyperspectral images would be using a set of
band-pass filters [6], [7], [9]. This comes in two different
ways. One way is to place a band-pass filter in front of
the camera and switch to a different filter for each shot. So
in each shot the camera captures the image of a specific
narrow wavelength band. Then the hyperspectral image
is formed by combining tens of images. However, this
method requires more than one shot and thus the temporal
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resolution can be low when recording a video is needed. In
addition, the mechanical filter switching motion can cause
blur.

Another way is to replace the Bayer color filter array
with a complicated filter array composed of filters of more
bands. However, the effective pixel number for each wave-
length band decreases then. The more bands we need, the
lower spatial resolution would be, and the more mosaic the
image would be. Besides, filters with a narrow band can
have very low transmittance, which can decrease the signal-
to-noise ratio.

Mask-based hyperspectral imaging. A typical mask-based
hyperspectral imaging system is implemented in [8]. The
idea is to use a prism to generate spatial dispersion. To
avoid overlapping in the spectra of neighboring points and
increase spectral accuracy, the researchers place an occlu-
sion mask to sample the scene sparsely. This method has
high spectral precision. However, the mask and collimating
optics require very careful calibration and are expensive.
Besides, the sparsely sampled scene suffers from a low
spatial resolution.

The method I use in this project is similar in extracting
spectrum from dispersion. However, as I make use of the
prior knowledge of the small total variation and spectra
smoothness to solve the hyperspectral image from an in-
verse problem, the mask and collimating optics are not
needed. Besides, the hyperspectral image produced by my
method has a very high resolution.

3 PROPOSED METHOD

In this section, I will first explain the dispersive image
formation model of this hyperspectral camera. Then I will
describe the implemented algorithm that reconstructs the
hyperspectral image from the dispersed RGB image.

3.1 Dispersive image formation model

In [1], the researchers place a prism in front of the camera to
generate dispersion. The prism causes images of different
wavelengths to shift along a certain direction. The shift
amount is determined by the wavelength and the dispersion
property of the prism. To avoid the tedious camera calibra-
tion process and simplify the procedure but without loss of
generality, I arbitrarily assign a dispersive image formation
model for this project. The forward model is summarized in
Fig. 2 [1].

3.1.1 Model formation
The first step of the forward model is to shift the image
based on wavelength, which mimics the dispersion caused
by the prism. The raw hyperspectral images from the
dataset contain images whose wavelength ranges from 400
to 700 nm with a spacing of 10 nm. I shift the image along
the x-axis by 1 pixel every 10 nm wavelength. So the number
of wavelengths Λ is 31. But for spectral accuracy concern,
the reconstructed spectra will only cover 430 to 650 nm.

The second step is to project the hyperspectral image to
an RGB image, which mimics the 3-channel sensing function
of a conventional RGB camera. The dispersed hyperspectral
image is first projected to XYZ color space based on the

standard CIE 1931 color matching system. Then I convert
the image from XYZ color space to RGB color space.

Both the two steps above are linear transformations. So
I can use a matrix multiplier F to denote the two steps
above, which is short for forward model. Finally, I add some
Gaussian noise η to the captured RGB image. So the forward
model could be represented as

j = Fi+ η, (1)

where j ∈ RXY 3×1 and i ∈ RXY Λ×1 are the vectorized
captured RGB image and the raw hyperspectral image,
respectively.

Fig. 2. Forward model. Adapted from [1]. (a) The raw hyperspectral im-
age input is non-dispersive. (b) By dispersion, images will shift spatially
based on the wavelengths. (c) The dispersed hyperspectral image is
captured by a conventional 3-channel camera, which is equivalent to
converted into the RGB color space.

3.1.2 Insight into the model
The forward model is basically a lossy compression of the
raw image. The raw hyperspectral image contains 31 wave-
length channels, while the captured images only contain
3 color channels. Although a lot of information is lost in
the forward model and it seems hard to reconstruct the
spectra under such a high information compression ratio,
the key insight is that the raw image is usually piece-wise
smooth. So the spectral information from the interior of a
smooth piece can be inferred from the edge. Thus we could
compress information from interiors more and save more
information for the edge. By adding a prism in front of the
lens system, the spectrum at the edge could penetrate into
the interior of a smooth piece. That to say, we sacrifice the
pixels of the interior of a smooth piece for more spectral
information of edges. This is similar to the idea behind many
compression algorithm, such as Huffman coding, where
data with high-frequency occurrence is stored with fewer
bits [10]. In this image formation model, the interiors of the
images, which is usually homogeneous in their spectra, are
mapped into fewer pixels. The edges, which usually consists
of varying spectra, are mapped into more pixels. Therefore
it’s still highly possible to reconstruct the spectra under such
a high information compression ratio.

Fig. 3 illustrates the intuition of why dispersion could
provide spectral cues and how to design the reconstruction
algorithm [1]. The left top image is a non-dispersed image.
Because of metamerism, we cannot restore the spectrum
from a non-dispersed image. The left image in (b) shows
the spatial gradient of the same image along the x-axis. The
figure below is the plot of the gradient of RGB channels in
the orange line. We can see the gradient is non-zero only at
the edge. But because the gradients in different channels
are aligned, it’s hard to extract the full spectrum based
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on a single non-zero pixel value. On the other hand, the
right column shows the case of the corresponding dispersed
image. We can see the gradient values of the interiors are
still zero. That’s because the spectra of neighboring pixels
are the same, and when they overlap, they together recover
the same original color and produce zero gradients. The zero
gradients cannot provide spectral cues. However, we can
see a smooth change of intensity at the edge. The gradient
values are strongly related to the spectra. That indicates
there’s abundant spectral information at the edges. So this
intuition gives us a hint on how to reconstruct the raw
hyperspectral image. We could first recover the spectra of
edge pixels in the gradient domain. Then we could infer the
spectra of interiors based on spectra at edges.

Fig. 3. Adapted from [1]. (a) Left: Non-dispersed image; right: dispersed
image. (b) The corresponding x-axis gradient image of the above im-
ages. Orange lines refer to the plots of pixel intensities below.

3.2 Hyperspectral image reconstruction algorithm
The hyperspectral image reconstruction algorithm consists
of three major steps. As mentioned before, there are more
spectral cues at the edge. So the first step is to restore the
aligned image, which is not dispersed, so that we can then
detect the edges. Secondly, restore spectra of edge pixels in
the gradient domain. Finally, as the raw image is usually
piece-wise smooth, we reconstruct the whole hyperspectral
image by inferring from the spectra of the edges.

3.2.1 Restore the edges
The first step is to restore the edges. But before that we
need to first estimate the spatially-aligned hyperspectral
image ialigned ∈ RXY Λ×1 based on the captured dispersed
RGB image j ∈ RXY 3×1, which is equivalent to minimize
∥Fi − j∥22. However, this is an ill-posed problem because
there’s information loss in the forward model. So I use two
priors for this step. One commonly used prior is that the
total variation (TV) of the raw image ∥∇xyi∥1 is sparse.
The other prior is that the edges of different wavelength

images should be aligned. The spatial edges can be found
by applying the spatial gradient operator ∇xy , and the
differences in different wavelength channels can be found
by applying the spectral gradient operator ∇λ. Because the
spectra of daily objects are usually smooth and broadband,
this prior indicates the spectral gradient of the spatial gra-
dient ∥∇λ∇xyi∥1 is also sparse. The two priors could be
expressed as minimizing regularization terms. So the first
step is to solve the following convex optimization problem:

ialigned = argmin
i

∥Fi− j∥22 + α1 ∥∇xyi∥1 + β1 ∥∇λ∇xyi∥1
(2)

We solve this problem using alternating direction
method of multipliers (ADMM), which splits the original
objective into 3 terms.

min
i,z1,z2

∥Fi− j∥22 + α1 ∥z1∥1 + β1 ∥z2∥1
subject to ∇xyi− z1 = 0,∇λ∇xyi− z2 = 0.

(3)

Algorithm 1 provides the details of how to use ADMM
to solve this problem.

Algorithm 1 Restore aligned image ialigned

1: while stopping criterium is not satisfied do

2:
i(k+1) = argmin

i
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7: end while

In line 2 of Algorithm 1, the minimum of a quadratic
objective is found by the conjugate gradient method. In line
3 and line 4, the slack variables z1 and z2 are updated by
using the soft-thresholding operator:

Sθ(x) =


x− θ x > θ

0 |x| ⩽ θ

x + θ x < −θ

(4)

The first step actually provides a rough estimate of the
raw hyperspectral image. However, this estimation treats
interiors and edges equally. As discussed before, there are
more spectral cues at the edges. So we could obtain a better
estimation of the spectra when only focusing on estimating
the spectra at edges.

We could find the edges by projecting the aligned hyper-
spectral image to the RGB color space and then applying an
edge detector filter to the aligned RGB image. Because the
dispersion is along the x-axis, we only care about the edges
along the x-axis. I first apply a binary filter to find pixels
where the spatial gradient along the x-axis is larger than a
certain threshold. Then I blur the obtained image using a
Gaussian low-pass filter. Finally I apply a binary filter again
to find pixels where the spatial gradient along the x-axis
is larger than another threshold, which provides a reliable
estimate of edges along the x-axis.
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3.2.2 Restore spectrum of edge pixels in the gradient do-
main
Fig. 3 has indicated that there’s abundant spectral informa-
tion at edges in the gradient domain. So we would like to
estimate the gradient of edge pixels in this section. We use
gx ∈ RXY Λ×1 to represent the x-axis gradient of the whole
hyperspectral image, and vx ∈ REΛ×1 to represent the x-
axis gradient of edge pixels of the hyperspectral image. E
is the total number of edge pixels. gx and vx are linked
by linear transformation operators Mf ∈ REΛ×XY Λ and
Mb ∈ RXY Λ×EΛ, where Mf extracts the values at edge pix-
els from the full size image, while inversely Mb interpolates
edge pixel values with zeros to restore the full size image.

vx = Mfgx,gx = Mbvx (5)

The edge gradient reconstruction problem could be formu-
lated as:

v̂x = argmin
vx

∥FMbvx −∇xj∥22 + α2 ∥∇λMbvx∥1

+ β2 ∥∇xvx∥22
(6)

The first term is the data term, which describes the x-axis
gradient of the image formation model. The second term is
the same as the third term in the previous section, which
describes the spatial alignment of edges by enforcing sparse
changes of gradients along the spectral dimension. The third
term minimizes the second-order spatial derivative of the
estimated hyperspectral image to reduce artifacts. Again,
we use ADMM to solve this problem. See Algorithm 2 for
details.

Algorithm 2 Restore gradient of edges vx

1: while stopping criterium is not satisfied do

2:

v(k+1)
x = argmin

vx

∥FMbvx −∇xj∥22 + β2 ∥∇xMbvx∥22

+
ρ

2

∥∥∥∇λvxy − z
(k)
3 + u

(k)
3

∥∥∥2
2
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3

)
4: u
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(k)
3 +∇λv

(k+1)
x − z

(k+1)
3

5: end while

Once we obtained the gradient at edge pixels vx, we
can compute the gradient of the full size image using ĝx =
Mbv̂x.

3.2.3 Reconstruct hyperspectral images
After obtaining the gradient of the image at edge pixels,
we can reconstruct the hyperspectral image by solving the
following optimization problem.

î = argmin
i

∥Fi− j∥22 + α3 ∥∇xi− ĝx∥22 + β3 ∥∆λi∥22 . (7)

The first term describes the dispersed image formation
model. The second term uses the gradient at edges which
I find in the previous step and minimizes its difference
with the gradient of the reconstructed image. The parameter
α3 describes the weight of the similarity in the gradient
at the edges. In the third term, the operator ∆λ computes
the second-order spectral derivative. The prior is that the
spectra in usual scenes should be smooth. Because this

optimization problem consists only of l2-norm terms, we
can simply use conjugate gradient method to solve it.

4 ANALYSIS, EVALUATION, AND COMPARISON TO
OTHER METHODS

My implementation takes about 2 minutes to reconstruct a
256×256×31 hyperspectral image. I crop the reconstructed
image into the size of 256×224×23, with 23 wavelengths
from 430 nm to 650 nm in 10 nm intervals. The shrink
in spatial size is because the dispersion causes marginal
pixels’ information lost. The short wavelengths and long
wavelengths information are discarded because their rela-
tive error is high compared to wavelengths in the middle.
But for many applications, the 430 nm to 650 nm range is
enough as it has covered the major part of the visible band.

4.1 Method analysis

Optimization parameter analysis. There are a few optimization
parameters in this method, namely α1, β1, α2, β2, α3, and
β3. Analysis shows that the results are not sensitive to α1

and β1. That’s reasonable because α1 and β1 are used in
step 1 to align the dispersed image. The aligned image is
only used to detect the edge. It’s not necessary to recover
very accurate spectra or high spatial resolution. Thus the
final results are not sensitive to α1 and β1. However, the
parameter choices for α2, β2, α3, and β3 are important. Table
1 shows sensitivity analysis results on α2 and β2. I evaluate
the parameter choices by comparing the reconstructed spec-
tra and ground truth spectra on several patches in the image
and computing their average root mean square relative error
(RMSRE). It is defined as

RMSRE =

√√√√ 1

n

n∑
i=1

(
x̂i − xi

xi

)2

, (8)

where x̂i denotes the reconstructed spectrum and xi denotes
the ground truth spectrum. A small average value of RM-
SRE means the reconstructed spectra is close to the ground
truth spectra. So the smaller the RMSRE is, the better the
method is. By scanning different choices of α2 and β2, we
can see we get smallest average RMSRE when α2 = 10−4,
and β2 = 10−1. Using similar method, I find the best choice
for α3 and β3 is α3 = 5× 10−4, and β3 = 2× 10−3.

TABLE 1
Average spectral RMSRE of recovered image by setting different α2

and β2

Average RMSRE β2 = 10−2 β2 = 10−1 β2 = 1

α2 = 10−5 0.1732 0.1726 0.1700
α2 = 10−4 0.1759 0.1686 0.1728
α2 = 10−3 0.1723 0.1727 0.1700

Noise sensitivity analysis. In this section, I analyze the
influence of different noise levels on the results. This is
important because the second step in the hyperspectral
reconstruction algorithm is done in the gradient domain.
As gradient can magnify the noise, the final result might be
sensitive to the noise. In the forward model I add Gaussian
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noise to the captured dispersed image. The noise level is
defined as the reciprocal of the signal-to-noise ratio, or
rather the standard deviation of the noise divided by the
average pixel value. I use PSNR of the recovered image (con-
verted into RGB color space) and average spectral RMSRE
to evaluate the model.

From Fig. 4 we can see that when the noise level is lower
than 0.1, both PSNR and RMSRE almost don’t change. So
my hyperspectral image reconstruction is not sensitive to
noise when the noise level is less than 0.1. This indicates my
method is robust in practice as 0.1 is a relatively high noise
level in photography and usually the actual noise level is
much lower.

Fig. 4. The two figures show how PSNR and average spectral RMSRE
change versus the noise ratio

4.2 Comparison to other methods

Spatial resolution. Compared to filter-based methods and
mask-based methods, my method doesn’t sacrifice spatial
resolution for the spectra. In addition, the average PSNR
in the results is higher than 26, indicating that the re-
constructed RGB image remains spatially accurate. So this
method could reconstruct high-precision spectra without
harming spatial accuracy. However, if using a narrow-band
filter array to reconstruct the hyperspectral image, as there
are 23 wavelength channels, the effective pixel number for
each wavelength channel is total pixel number divided by
23, and the spatial resolution will be low then [6]. So my
method produces images with higher spatial resolution than
filter-based methods and mask-based methods.

Temporal resolution. Because my algorithm can recon-
struct the whole spectrum from a single shot, it has a very
high temporal resolution. Besides, as it is not sensitive with
respect to a noise level as high as 0.1, it could work well
when using a short exposure time and large ISO, which
is needed in shooting a high frame rate video. However,
spectral scanning methods usually take tens of shots to
reconstruct a hyperspectral image, which suffers from very
low temporal resolution [6]. Therefore my method beats
spectral scanning methods in temporal resolution.

5 RESULTS

I use a public hyperspectral image dataset [11] to test my im-
plementation. In Fig. 1 and 5, I reconstruct the hyperspectral
images of lemons, a ColorChecker, and a toy dog.

Spatial resolution. One of the major advantages of this
method compared to other methods is that it doesn’t involve
intrinsic reduction in the effective pixel number. From the

reconstructed hyperspectral images and RGB images shown
in the second and third columns of Fig. 5, we can see they all
preserve very high spatial resolution. Even with a Gaussian
noise level as high as 10%, the PSNRs of the recovered RGB
images of the lemons, the ColorChecker, and the toy dog are
26.76, 30.81, and 24.39, respectively. Thus there isn’t much
resolution loss when recovering spectra using this method.

Spectral Accuracy. By comparing the ground truth spectra
and reconstructed spectra shown in the left three columns in
Fig. 1 and 5, we can see they match quite well. The average
root mean square relative error (RMSRE) is less than 0.2.
So this algorithm can produce very accurate spectra. We
can easily distinguish the reconstructed spectra of the real
lemon and fake lemon as there is higher intensity in the
long-wavelength band in the real lemon’s spectrum (see Fig.
1 (g)). Therefore such accuracy is high enough to be used in
fields like material discrimination.

6 LIMITATIONS DISCUSSION AND FUTURE WORK

6.1 Edge blurriness

By looking at the reconstructed image, we can see the
edges are blurry. That’s because the dispersion causes the
captured image to be blurry at the edges. The edge blur in
the original input image and spectral dispersion will both
cause edges to be blurry in the captured RGB image. Even
though the algorithm tries to align the dispersed image, it’s
hard to tell whether the blur is caused by dispersion or the
edge of the original image is blurry in nature. That’s also
the major limitation on spectral accuracy because spectral
dispersion can come along with edge blur and it’s hard for
the algorithm to separate the two factors.

In order to solve this problem, one possible solution
would be to use more priors related to edge sharpness.
For example, we could add another regularization term in
the inverse problem to maximize the edge sharpness if we
have the prior knowledge that the captured objects have
clear outlines. In addition, we could sharpen the edge of the
reconstructed image in a post-processing step to make the
edges look clearer.

6.2 Depth-dependent dispersion

In this project, I arbitrarily define a spatially independent
dispersion model for the image formation process. That’s
to say, the dispersive PSF is spatially invariant. In practice,
the dispersion and PSF could be spatially dependent and it
could cause a error to this method if the depth is unknown.
A possible solution would be to first calibrate the camera
system and store the spatially dependent PSF. Then apply
a depth estimation neural network to the aligned image
to analyze the depth-dependent image formation process
[12]. Once the depth-dependent image formation process is
obtained, we could use the same method to reconstruct the
hyperspectral image.

7 CONCLUSION

In this project, I realize a hyperspectral image reconstruction
algorithm with high spatial and spectral resolution from
a single shot. It only needs a dispersive optic such as a
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Input Each spectral channel Recovered image

1 2

3

4

5

6

1 2 3

4 5 6

PSNR: 30.81 RMSRE: 0.2712

PSNR: 24.39

RMSRE: 0.2040 RMSRE: 0.2063

RMSRE: 0.0080 RMSRE: 0.1222 RMSRE: 0.1386

Fig. 5. Hyperspectral images reconstruction results of two images. From left to right are the RGB version of the raw images, reconstructed
hyperspectral images in each wavelength channel, recovered images in RGB color space, and the comparisons of reconstructed spectra and
ground truth spectra of 6 different patches in the images.

prism or a grating, and a conventional 3-channel camera.
I demonstrate this algorithm on three different input scenes,
i.e. lemons, a ColorChecker, and a toy dog. The recon-
structed spectra show a low error compared to the ground
truth spectra. The average spectral RMSRE is lower than
0.2. The PSNRs for the three scenes are 26.76, 30.81, and
24.39, respectively, indicating this method can also retain
high spatial resolution. This method is not sensitive to noise
when the noise level is less than 0.1, or the signal-to-noise
ratio is larger than 10 dB, which is usually satisfied in most
imaging systems. So this hyperspectral image reconstruction
algorithm is of great practical use.

The major limitation of this algorithm is it’s hard to
distinguish edge blur and edge dispersion, thus resulting
in blurry edges. It’s interesting to explore the possibility to
solve this problem by adding edge sharpness prior to the
reconstruction algorithm.
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