
EE 367, WINTER 2022 1

Deep-Demosaicing Using CNNs
Stanford University, Ike Osafo Nkansah, Guillermo de Leon Archila

Abstract—The resurgence of AI methods, facilitated by meth-
ods such as backpropagation and the growth in computational
power, as viable approaches to solving complex problems has
amassed a lot of good traction in many different fields. In the
field of image processing, AI methods have been applied to
many different stages of the image processing pipeline: denoising,
demosaicing, deconvolution etc. This paper aimed to explore the
application of deep neural networks to the problem of demo-
saicing; in particular, this paper explored full end-to-end CNN
architectures which takes in raw images from camera sensors
and directly yield images in the linear or colored space. The
core find of this paper is that designing an optimal CFA-agnostic
demosaicing model require having very deep architectures as
it is generally harder for the model to infer the color filtering
pattern of a random raw image but designing a CFA-specific
demosaicing model is more tractable and generally warrants
shallower networks, yet sufficiently deep, to surpass traditional
demosaicing algorithms. This work distinguishes itself from other
works in the literature in that it seeks to build a full CNN that
includes minimal prior knowledge and assumptions from the
traditional demosaicing algorithms, such as bilinear interpolation
etc. In this way, this approach allows the model the flexibilty to
explore unconventional parameters that may help improve the
effectiveness of the demosaicing task.

Index Terms—Bayer pattern, CFA, Transfer learning, En-
coders, SSIM, L2, L1, ReLU, MS-SSIM, CNN, DMCNN

I. INTRODUCTION

Digital cameras are readily available all around the world.
This was made possible by the development of efficient
technologies that improve each step in the image processing
pipeline. Many digital cameras use a color filter array (CFA)
pattern when recording an image (most commonly the Bayer
pattern). The raw image captured by the camera sensor,
through the CFA, contains information of only one color per
pixel. Here the necessity of an efficient interpolation algorithm
for demosaicing arises as a fundamental part of the image
processing pipeline.

Traditionally, the demosaicing task has been done by the
implementation of linear and nonlinear filters that seek to
achieve the best interpolation paradigm. In [1] we can find
a comparative study in the performance of nine different
demosaicing algorithms. In all nine cases, color artifacts can
be observed in some of the processed images. These methods
have been outperformed by data-driven approaches, such as
the application of convolutional neural networks (CNNs) to
solve the demosaicing problem [2].

An interesting conundrum with data-driven approaches is
that any training dataset of raw images to colored images
would have relied on some specific demosaicing scheme to
generate the colored images. This means in principle that with
data-driven approaches, we are constrained in performance by
whatever approach was used to generate the training dataset. In

the work we will be discussing in the subsequent sections, we
seek to evaluate the performance of our own implementation
of a convolutional neural network and compare it to traditional
demosaicing methods and other data-driven techniques. In
particular, our approach seeks to incorporate priors and regu-
larizers that can mitigate the effect of the prior demosaicing
algorithms used to generate the training dataset images, all the
while seeking to outperform traditional demosaicing methods.

II. RELATED WORK

Our work seeks to supplement other works within the
literature of applying convolutional neural networks to the
different problems in the image processing pipeline. The ideas
we explore here builds primarily on the works of [2], [4],
[8]. All of these papers use a patch-based method, where the
input raw image is first expanded out into the mosaic pattern
in the linear rgb color space depending on the type of CFA
pattern that was used to capture the dataset. In doing so, these
methods were not aiming to be agnostic to the type of CFA
pattern that was used to acquire the raw image. Our work
explores the possibility of universalizing an architecture that is
agnostic to the type of CFA pattern. Secondly, the patch-based
method assumes strong pixel locality. For example, in [2]
patches of 33x33 are extracted from the raw image dataset and
used to train their DMCNN and DMCNN-VD models. Though
the patch sizes are considerably large, allowing flexibility for
the model to learn dependencies between both near and far
neighboring pixels, the field of view of the model is inherently
limited, regardless of how deep the neural network is due to
the limited spatial size of the input patches. What this means
is that assuming there are dependent pixels that are farther
than 33 pixels in euclidean distance away from a particular
center pixel, these architectures will not be able to capture the
holistic effect. In using relatively deep models with the full
raw image as input, we enforce spatial locality in defining the
pixel color values, through small fields of view of the overall
model. Zhao Hang et. al. note in their research that for imaging
tasks, the L2 loss function may not be a good function as
it check pixel-wise differences. They recommend patch-based
similarity index methods such as Structural Similarity Index
Metric (SSIM) and Multiscale-SSIM (MS-SSIM). From the
results they compiled, we noted that the L2 loss produced
images that were less visually pleasing (with more color
artifacts and blurry grid artifacts) and so inspired by this, we
ended up defaulting to L1 loss function in our model training
because it had very comparable visual appeal to the MS-SSIM
and the SSIM results the paper explored. The rest of the cited
works on demosaicing CNNs helped us with quickly iterate
through some good hyperparameter tunings as we explored
our own CNN versions for the demosaicing task.



EE 367, WINTER 2022 2

III. METHODS

The problem of demosaicing can be formulated as an inverse
problem of the form given below:

y = Ax

with y as either the vectorized version of the raw image
(compressed CFA pattern), as shown in 1 with the bayer
pattern, or a vectorized version of the decompressed 3-channel
raw image (shown in 1, also with the bayer pattern) and x as
the vectorized reconstructed full image in the sRGB space.

Fig. 1. Bayer Pattern splitting Figure recovered from [10]

This problem is better formulated algebraically as a gener-
alized least norm problem of the form below:

minimize ∥x−By∥
subject to: yfiltered = xfiltered

where B is the inverse of matrix A as defined in the inverse
problem above. As such matrix B takes in the vectorized
raw image and outputs a reconstructed rgb image. yfiltered is
defined as a vector of the non-zero values in the decompressed
CFA pattern raw image and xfiltered is similarly the non-
zero values in x that matches in the same index positions as
the vectorized y. This formulation inspires a different way of
thinking about the problem. The traditional methods such as
bilinear interpolation, bilinear interpolation with ycrcb filtering
conforms to the algebraic formulation above where prior to
the demosaicing step, the color channels in the output colored
image are first prefilled with the non-zero values of the CFA-
filtered raw image before the interpolation. This ensures that
the constraint in the generalized least-norm formulation is
enforced. The objective in this least norm problem is not to
find x, the ground truth images in sRGB/linear space, but
instead to find the matrix B (inverse of A) that transforms
the input measured raw image into the ground truth images.
In the traditional demosaicing approaches, we are interested
in designing linear filters which can be transformed into the
linear matrix B of interest. But in the context of using CNNs,
the goal is to learn a function f, such that:

B ≈ f(y)

with the variables defined as above. This formulation allows
for more flexibility in using non-linear filters to attempt to
solve this least-norm problem of demosaicing. As far as the
goal for this project is concerned, we aimed to design a
deep neural network (Deep CNN) that is able to faithfully
demosaic raw images, even on images with high spatial
frequencies.

Dataset: The very first step in the implementation of
any data-driven learning algorithm is to get a reliable dataset.
There are many readily available data-sets that have been
used before for the demosaicing task, such as in [6] and [7].
To reduce the complexity of the problem, we decided to focus
on only bayer pattern dataset. This led us to the Microsoft
Demosaicing Dataset, which contains images that were shot
with 2 different cameras: 1. Panasonic Lumix DMC-LX3 (500
images) and 2. Canon EOS 550D (57 images). We decided
to use only the panasonic dataset to train and evaluate our
model. Though 500 images is appreciably large, compared
to most computer vision datasets, this dataset size is very
small and hence there was the potential to ran into overfitting
even with appreciably sized models. Our resolve was to train
models that weren’t too deep (keeping the maximum number
of trainable hidden layers to no more than 10. We ended up
using the consistent split below for training all our models:

(Training, V alidation, Testing) → (425, 60, 15)

Finally for all our models, we first preprocessed the input
raw images by and then scaling the input 16-bit values to
between 0 and 1 and then decompressing the scaled input raw
image into its mosaiced channels before feeding it through our
various networks. We did not apply any normalizations to the
input raw images and we will discuss why this choice was
made in the later sections.

CNN Models: We considered 3 primary models as il-
lustrated in the 2, 3 and 4. The very first model was a
simple excite-squeeze model which takes in as input the three
mosaiced channels of the raw image and then outputs the 3-
channel rgb ground truth image (in linear space). The name
excite-squeeze comes from the fact that we first excite the
channels out to a large dimension and then squeeze it back
into the three channel output image of concern. For this model,
we experimented with different hyperparameter fine tuning for
this model, which we will discuss in detail later. This model
is illustrated in fig. 2

Fig. 2. Excite Squeeze Architecture

The next architecture, shown in fig. 3 was supposed to
leverage an already trained model on a large dataset of natural



EE 367, WINTER 2022 3

images. The decision to use this was motivated by the fact
that these models have seen a lot of images and hence
would have ”learnt” how a natural image is supposed to look
like. This is intended to be a form of regularization on the
generated/predicted grounded truth images by our model. The
architecture as seen below in fig. 3 ingests the mosaiced 3-
channel raw image and outputs a hidden representation that
passes through a squeeze network. The function of the squeeze
network here is both to squeeze the channel dimension and to
restore the image width and height spatial dimensions back to
match that of the input raw image.

Fig. 3. Transfer Learning with ResNet152 + Squeeze CNN

Our third and final model was inspired by the idea of
creating a different representation other than the mosaiced 3-
channel input raw image that will be fed into the pretrained
model and then finally out through the squeeze network to
recover the appropraite dimensions. We trained an autoencod-
ing stage to yield this desirable encoding. We hoped that this
encoding (though in the space image space as the mosaiced 3-
channel image) will allow for the later pretrained and squeeze
stage to be able to better demosaic from raw to ground truth
images.

Fig. 4. AutoEncoder + Transfer Learning with ResNet152 + Squeeze CNN

Loss functions: As we described already in the related work
section, we noted that the authors of [8] found that L2 loss
doesn’t yield visually pleasing outputs so we ended up opting
for the L1 loss function, which were visually comparable to
the MS-SSIM and SSIM approaches the paper suggested. The
L1 loss function is defined below:

Loss(X̂,X) =
1

n

n∑
j=1

∥X̂ −X∥ (1)

where X and are the ground truth images and predicted ground
truth images respectively.

IV. ANALYSIS & EVALUATION

In this section, we will talk about each model and the
hyperparameter finetuning we used for them.
Excite-Squeeze Model: To begin with, we will consider our
excite-squeeze architecture as described in the methods sec-
tion. For this architecture, we ended up training 3 flavors
(varying only in the depth of the hidden layers). The model
architectures we trained with hidden layer depths of 0 and 1
are shown below in fig. 5 and 6.

Fig. 5. Parameters Excite-Squeeze with 0 Hidden Layers

Fig. 6. Parameters Excite-Squeeze 1 Hidden Layer

With this simple architecture, we wanted to test whether the
depth of the hidden layer affects performance, albeit noting the
constraint of a small dataset size. The small MDD (Microsoft
Demosaicing Dataset) meant that we shouldn’t train a very
deep neural network because of the issues of overfitting.
Though we could have used a corresponding L2 regularizer
term to reduce this, we reasoned that this will increase our
iteration time for converging on a good model so we decided
not to explore this route. On the output of these models, we
had a sigmoid function that transforms the output of the last
conv layer to values between 0 and 1. This was necessary
in order to compare the predicted groundtruth images to
the original ground truth labels. Additionally, after several
iterations exploring different learning rates, we converged on
a learning rate of 0.001 and trained both models (fig. 5 and
6) for an average of 150 epochs each. After training, we
evaluated on our test set and also on the entire set of 500
images and recorded the final PSNR values in table I. It is
worth mentioning that we used kiaming initialization for our
convolutional layers, and used SELU activations as can be
seen in the table. The reason for this choice was that [2] used
this activation for their training and it yielded better results
compared to other activations like ReLU or LeakyReLU. Also,
we confirmed that this was the case for us with the MDD
dataset by training for about 20 epochs to observe the rate of
convergence. Both ReLU and SELU seemed to be at par so
we just randomly decided to use SELU instead.

ResNet + Squeeze CNN model: In this section, we decided
to explore 2 pretrained models, i.e. vgg and resnet. With each
of these models, we experimented with different pretrained
model sizes: for vgg, we looked at vgg11, vgg14, vgg19 etc.



EE 367, WINTER 2022 4

and for resnet, we explored resnet101, resnet18, resnet152. We
generally noticed that resnet performed better and particularly
resnet152 performed the best, as we can see in table I. This
made sense because of the theory that any sufficiently large
model can learn any arbitray complex function and so within
the domain of computer vision, it was arguable that the
larger models would be able to better learn the distribution
of natural images compared to the shallower ones. With this
insight, we converged on training our model with both vgg19
and resnet152 but we have only reported the results for
resnet152 because it performed the best. For both pretrained
models, we froze the layers we were interested in and we
trained our architecture with an L1 loss, epoch number of
rough 150 and just the panasonic image dataset (without any
standard image transformations). We froze the layers because
we realized that fine-tuning the early layers resulted in slower
convergence, though we believed given enough time (epochs),
there wouldn’t be a difference between the models trained
with finetuning and those without. The model architecture is
described below:

Fig. 7. Parameters ResNet152 + Squeeze CNN

Autoencoder + ResNet152 + Squeeze CNN model: The
models we explored here, as already highlighted in the meth-
ods section, just built on top of the ResNet152 + Squeeze
CNN model by first learning an encoding in the 3-channel
dimension space. The aim was to make the later squeeze
layer, which performs the main demosaicing interpolations
”easier”. Similar to section above, we tried both resnet and vgg
pretrained models, in particular we tried vgg19 and resnet152
and found that resnet152 performed better so we ended up
reporting that as our final model. The encoder architecture we
used can be found below:

Fig. 8. Parameters Autoencoder

The encoder was trained with 4 trainable layers as shown
above. The middle layer with the 3 channels was used as our
encoding and we trained this model for about 100 epochs
with the L1 loss function. The only thing to note here was

that our loss function took as input the predicted raw image
and the input raw image. We also explored a deeper encoding
architecture but realized that the loss converged to similar
values after the same number of epochs so we stuck to the
shallow encoder that is reported in this paper. The rest of the
hyperparameters are as reported for the ResNet152 + Squeeze
CNN model. We report the full architecture, including the
autoencoder below:

Fig. 9. Parameters Autoencoder + ResNet152 + Squeeze CNN

V. RESULTS

Table I shows the mean PSNR of the demosaiced images
after applying a series of demosaicing methods. The first four
methods correspond to linear filters. These serve as a baseline
to compare the performance of the demosaicing methods
using CNNs. The best performing method in our data-set
corresponds to ”High Quality Interpolation” [9] with low-
pass filtering of the chrominance channels in the yrcbc space.
The best performing CNN method corresponds to an excite-
squeeze architecture, as shown in figure 2, with one hidden
layer.

TABLE I
MEAN PSNR OVER COMPLETE DAT-ASET FOR DEMOSAICING METHODS

Model PSNR over the Data set
Bilinear Interpolation 30.26
Bilinear Interpolation + yrcbc filtering 32.45
High Quality interpolation 33.39
High Quality interpolation + yrcbc filtering 34.93
Excite-Squeeze No hidden layers 30.20
Excite-Squeeze 1 Hidden Layer 32.19
Excite-Squeeze 2 Hidden Layers 31.87
Resnet152 + Squeeze CNN 31.01
Autoencoder + Resnet152+ Squeeze CNN 30.32

The following figures show a qualitatively comparison of
a ground truth image example vs the demosaicing methods
shown in table I. Is the opinion of the authors that among the
demosaicing method using CNNs, the higher quality image is
obtained with the excite-squeeze architecture with one hidden
layer.



EE 367, WINTER 2022 5

Fig. 10. Ground Truth

Fig. 11. Demosaiced Image using Linear Filters

Fig. 12. Demosaiced Image using Linear Filters

VI. DISCUSSION

Quantitative and Qualitative Results: We evaluate the
qualitative performance of our algorithms by the presence
of color artifacts, tone of the colors (with respect to the
ground truth) and the presence of artifacts in the textures of
the demosaiced images. As shown in figure 12 and 11, all
the methods tested in this work, both the baselines and the
CNNs, generate demosaiced images which display color and
texture artifacts in different degrees. Additionally, the tonality
of the colors in the demosaiced image diverges from the
ground truth image more noticeably in the networks that use
transfer learning as part of the architecture. We suspect the
last effect is due to the fact that we are feeding a linear image
to a network that was trained using gamma corrected images.

It is interesting to note that the demosaiced images generated
with these methods outperform the bilinear interpolation in
terms of the PSNR, even with the evident distortion in the
color tones.

Regarding color artifacts and texture artifacts. The best
performing CNN is the one corresponding to the excite-
squeeze architecture with one hidden layer. The presence
of color artifacts in with this method is comparable to the
High quality interpolation with filtering of the chrominance
channels. We suspect that a deeper network trained over a
larger dataset could outperform all, both qualitatively and
quantitatively, the baseline methods.

A. Future Work

As far our explorations went, we realized there are different
directions we could have taken that would have helped with
the demosaicing task. We set out to explore a CFA-agnostic
method, which we tried but we generally realized that it
was performing quite poorly. These results were what we
reported in our presentation work. We however realized that
we trained the networks for much fewer epochs and that may
have resulted in the performance bottlenecks we saw. Moving
forward we would train those models and the ones presented
here for a much longer time. Additionally, we would also
impose the least norm constraint to enforce that our predicted
ground truth images have the same channel values as in the
mosaiced 3-channel raw image; we didn’t enforce this in any
of our current models. Finally, building on top of the work of
[2], we would have explored a residual learning architecture,
which is known to help with training deeper models. As
we observed with the excite squeeze architecture, the deeper
network performed the best in the overall set of architectures
we tried. We noted through an experimental process that the
deeper networks would require more epochs to train to the
same validation psnr values hence our suggestion to train our
models longer. We would also explore data transformations
such as flips and jittering etc. where necessary to increase our
dataset size in hopes of allowing our models to better learn
the required mapping functions (or distributions). As far as
the autoencoding stage is concerned, we would have explored
even higher dimensional embeddings in hopes of getting a
better decomposition of the pattern before reconstructing into
the 3-channel color space images.

1

REFERENCES

[1] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M.
Mersereau, “Demosaicking: Color filter array interpolation,” IEEE Signal
Processing Magazine, vol. 22, no. 1, pp. 44–54, Jan. 2005.

[2] N. S. Syu, Y. S. Cheng, Y. Y. Chuang, “Learning Deep Convolutional
Networks for Demosaicing”, Arxiv: Computer Vision and Pattern Recog-
nition. Feb. 2018.

1The previous results can be replicated by executing the
code in the notebooks: https://drive.google.com/drive/folders/
14sGSkADs5vBx6mhNiX3TFB67Zi6oeO32?usp=sharing
You will need to create a direct access of the folder in the root folder of
your google drive



EE 367, WINTER 2022 6

[3] D. S. Tan, W. Chen and K. Hua, ”DeepDemosaicking: Adaptive Image
Demosaicking via Multiple Deep Fully Convolutional Networks,” in IEEE
Transactions on Image Processing, vol. 27, no. 5, pp. 2408-2419, May
2018, doi: 10.1109/TIP.2018.2803341.

[4] Y. Wang, ”A multilayer neural network for image demosaicking,” 2014
IEEE International Conference on Image Processing (ICIP), 2014, pp.
1852-1856, doi: 10.1109/ICIP.2014.7025371.

[5] K. Cui, Z. Jin and E. Steinbach, ”Color Image Demosaicking Using
a 3-Stage Convolutional Neural Network Structure,” 2018 25th IEEE
International Conference on Image Processing (ICIP), 2018, pp. 2177-
2181, doi: 10.1109/ICIP.2018.8451020.

[6] D. Khashabi, S. Nowozin, J. Jancsary, and A. W. Fitzgibbon, “Joint
demosaicing and denoising via learned nonparametric random fields,”
IEEE Transactions on Image Processing, vol. 23, no. 12, pp. 4968–4981,
2014.

[7] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep joint demo-
saicking and denoising,” ACM Transactions on Graphics, vol. 35, no. 6,
pp. 1–12, 2016.

[8] Zhao, Hang, et al. “Loss Functions for Neural Networks
for Image Processing.” CoRR, abs/1511.08861, 2015. doi:
http://arxiv.org/abs/1511.08861.

[9] H. Malvar, L. He, R. Cutler. ”High-quality linear interpolation for
demosaicing of Bayer-patterned color images”, International Conference
of Acoustic, Speech and Signal Processing, May 2004

[10] P. Lou, M. Zhang, Z. Ghassemlooy, D. Han, ”Experimental Demon-
stration of RGB LED-Based Optical Camera Communications”, IEEE
Photonics Journa, October 2015


