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Implementation of the weighted nuclear norm
minimization for image denoising

Andrei Kanavalau

Abstract—In this project the weighted nuclear norm minimization (WNNM) algorithm for image denoising is implemented in Python.
Implementation choices are explained and most important components identified. Parameter tuning is performed. The performance of
WNNM based denoising is compared to that achieved using Gaussian, Bilateral, and non-local means (NLM) filters. WNNM
outperforms the other techniques including NLM approach based on both visual assessment and metric such as peak signal to noise
ratio (PSNR) and structural similarity index (SSIM). A number of ways in which both computational time and denoising performance of
the algorithm could be improved are identified. The code developed can be found at
https://github.com/kanavalau/EE367 Project WNNM denoising

Index Terms—EE376, Computational Imaging, Weighted Nuclea Norm Minimization
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1 INTRODUCTION

IMAGE denoising is an import step of the image pro-
cessing pipeline, which has a significant impact on any

downstream uses ranging from simple consumer needs,
people want to take visually pleasing photos in various
conditions with practical devices, to object identification
and localization in robotics, and information extraction in
scientific imaging. As a result noise reduction remains an
actively investigated problem in the field of computational
imaging.

The task of image denoising is to find the best estimate
of the true image, y, based on a noisy reading x. In this case
the image formation model can be written simply x = y+ η
as where η is the random noise. The sources of noise in
imaging include but are not limited to amplification, read,
and shot noise. With the exception of shot noise the noise
is independent of the signal and can be approximated to
follow a zero mean Gaussian distribution. Shot noise follows
a Poisson distribution. In this project we concentrate on
reducing Gaussian noise as it is more commonly observed.

The aim of this project is to implement a state of the art
technique based on weighted nuclear norm minimization.
Specifically the algorithm detailed in [1] is implemented.
Significant components of the approach are not explicitly
detailed in the paper and are experimented with. Perfor-
mance of the final algorithm is compared to that achieved
using Gaussian, Bilateral, and non-local means (NLM) filters
both visually and on the basis of two numerical metrics:
peak signal to noise ratio (PSNR) and structural similarity
index (SSIM). Further suggestions on how the method could
be improved are also discussed.

2 RELATED WORK

All noise removal techniques estimate the true pixel inten-
sities by taking into account information from across the
image. The simplest methods such as Gaussian or median
filtering rely on just a small area around each pixel and
assume that the intensities of the surrounding pixels are
representative of the central pixel. This would be expected

to work well on uniform patches in images but is clearly
going to lead to blurring of edges and other sharp features.
The simplest improvement comes in the form of bilateral
filtering, which introduces another simple idea that if the
intensity of a nearby pixel is significantly different from the
central pixel its contribution should be weighted down.

Bilateral filtering, although better at preserving edges
still only relies on a small area around each pixel. A big
improvement is achieved by using non-local methods where
similarity of the area around the pixel to other parts of the
image can be used for noise reduction. One of the sim-
plest methods using this approach is the non-local means
(NLM) [2]. Current state of the art approaches such as block
matching and 3D filtering [3] and weighted nuclear norm
minimization (WNNM) [1] are non-local methods.

As in many other areas of computational imaging high
performance in image denoising has been achieved using
convolutional neural networks (CNNs) in recent years [4].
Specifically referred to as denoising convolutional neural
networks (DnCNNs) they are usually trained on the sets of
noisy and clean images to predict the noise. In applications
the output of the network corresponding to the noisy image
is subtracted from the said image to obtain an estimate of
the clean image.

3 METHODS

In this section the theory of WNNM is first presented
followed by an overview of implementation details. Other
denoising methods used in the project are then formulated
and comparison metrics used are presented.

3.1 Weighted nuclear norm minimization
3.1.1 Theory
Using x to denote the true clean image and η additive
Gaussian white noise with zero mean and variance σ2 the
image formation model can be written as

y = x+ η. (1)

https://github.com/kanavalau/EE367_Project_WNNM_denoising
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WNNM approach starts by going around the image in a
sliding window fashion identifying central patches yj and
finding similar patches in a search window around the cen-
tral patch. The patches are then stacked in a matrix Yj with
each column corresponding to a patch. The relationship
between the noisy patch matrix and the clean one is given
by

Yj = Xj +Nj . (2)

The idea of weighted nuclear norm minimization is that Xj

should be approximately low rank with just a small number
of singular values capturing the true low dimensional struc-
ture of the image and the rest being much smaller or zero.
Can expect to obtain a good estimate of the true image by
solving the following optimization problem

minimizeXj

1

σ2
||Yj −Xj ||2F + ||Xj ||w,∗. (3)

The first term of the objective || · ||F is the Frobenius norm
given by the sum of squares of all the entries of the matrix.
For a matrix A with Aij representing the entry in row i
column j it is given by

||A||F =

√∑
i

∑
j

A2
ij . (4)

This term ensures similarity between the noisy patches and
the denoised estimate. The second term is the weighted
nuclear norm, which is the sum of singular values weighted
by a vector w. Using σi(A) and wi to represent the ith
singular value of A and the ith entry of w respectively the
weighted nuclear norm can be written as

||A||w,∗ =
∑
i

wiσi(A). (5)

This term drives the estimate of the clean patches to be low
rank. The regularization parameter between the two terms
is chosen to be the variance of the noise in the image. The
optimization problem given in equation (3) is solved by first
performing singular value decomposition (SVD) on Yj such
that

Yj = UΣV ′. (6)

The estimate of the clean patch X̂j is obtained by soft-
thresholding the singular values according to

Sw(Σ) = max {Σii − wi, 0} (7)

and setting the result as the singular values of X̂j giving

X̂j = USw(Σ)V
′. (8)

The weights are chosen such that larger singular values
corresponding to structure in the patches are scaled down
less than the small singular values likely corresponding to
the noise. The ith weight is given by

wi =
c
√
n

σi(Xj) + ϵ
(9)

where c is a parameter to be specified, n is the number of
similar patches (i.e. number of columns in Yj) and ϵ a small
number to avoid division by 0. The only issue remaining is

that σi(Xj) cannot be computed directly. The solution is to
initially estimate them using

σ̂i(Xj) =
√
max {σ2

i (Yj)− nσ2, 0} (10)

and then compute equations (8) and (9) iteratively with
σ̂i(Xj) = σi(X̂j).

By repeating the above procedure for every patch an
estimate of the clean image x̂ can be obtained. A number
of iterations can be performed to further improve the final
output. The overall procedure is summarized in algorithm
1.

Algorithm 1 Image Denoising by WNNM [1]
Input: Noisy image y

Initialize x̂(0) = y, y(0) = y
for k = 1 : K do

Interative regularization y(k) = x̂(k−1) + δ(y − x̂(k−1))
for each patch yj in y(k) do

Find similar patch group Yj

Estimate weight vector w
Singular value decomposition Yj = UΣV ′

Get the estimation: X̂j = USw(Σ)V
′

end for
Aggregate X̂j to form the clean image x̂(k)

end for
Output: Clean image x̂(K)

3.1.2 Implementation
WNNM for denoising is implemented in Python. The above
section presents the denoising algorithm as specified in [1],
which leaves a number of steps under-specified. This section
details the specific choices made in this project. First is the
procedure for identifying similar patches. Based on [3] mean
squared error between patches was chosen to be the distance
metric between different patches as

dWNNM(yi, yj) =
||yi − yj ||22

m2
(11)

where m is the width of each patch. Two methods for choos-
ing which patches should be included in Yj were investi-
gated. For the first one the distance metric was thresholded
such that yi is included in Yj if dWNNM(yi, yj) ≤ τ . For the
second one a specified number n of patches with smallest
distances to the central patch were included. It was found
that th e latter approach achieves more consistent denoising
performance.

Another decision regarded the number of iterations per-
formed when estimating σ̂i(Xj). It was found that good
results are obtained with just one iteration. Slight improve-
ment is achieved by increasing the number of iterations and
3 was chosen as a result.

No specific details on how Xj is used to form x̂ are
provided. One option would be to just use the first col-
umn corresponding to the central patch. At the same time
all column could be used to reconstruct the patches they
correspond to. In both cases the number of times each pixel
has been contributed to from different patches needs to be
kept track of and averaged at the end. In this project we only
had time to implement the first approach.
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Two methods of performing singular value decompo-
sition were also investigated. In the first one SVD was
applied directly to Yj while in second one the columns of
Yj were first centered by subtracting the means. The means
were then added back when reconstructing X̂j . Slight im-
provement in performance was achieved using the latter
approach.

Finally it was observed that after a number of outer
iterations the intensities in x̂(K) would noticeably exceed the
maximum intensity. The first approach was to normalize the
output by the maximum value observed. The entries of each
X̂j were later clipped to be between minimum and max-
imum intensity values achieving significant improvements
in denoising performance.

3.2 Other denoising methods used

3.2.1 Gaussian
Gaussian filter estimates intensity of a pixel in the clean
image by a taking weighted average of the noisy pixels in a
patch around the pixel. Using In(z) to denote pixel intensity
in the noisy image at location z and zj to denote the location
of the central pixel in noisy patch yj , the estimate of the
intensity of the denoised central pixel Îd(zj) is given by

Îd(zj) =

∑
z in yj

In(z)WG(z, zj)∑
z in yj

WG(z, zj)
(12)

where the Gaussian weight is given by

WG(z, zj) = exp

(
−||z − zj ||22

2σ2
G

)
(13)

and σG and the patch size are tunable parameters.

3.2.2 Bilateral
Bilateral filtering modifies the Gaussian filtering procedure
by introducing a weight corresponding to how similar the
pixel intensities are. The equation is

Îd(zj) =

∑
z in yj

In(z)WB(z, zj)∑
z in yj

WB(z, zj)
(14)

where the Bilateral weight is given by

WB(z, zj) = exp

(
−||z − zj ||22

2σ2
B,1

)
exp

(
− (In(z)− In(zj))

2

2σ2
B,2

)
(15)

with σB,1, σB,2, and the patch size as tunable variables.

3.2.3 Non-local means
Non-local means extends the approach from comparing sin-
gle pixels to comparing patches and weighing contribution
from central pixels in other patches based on their similarity.
Using SW to refer to the search window

Îd(zj) =

∑
yi in SW In(zi)WNLM(yi, yj)∑

yi in SW WNLM(yi, yj)
(16)

with the NLM weight between two patches given by

WNLM(yi, yj) = exp

(
−
||yi − yj ||22,σNLM,2

2σ2
NLM,1

)
. (17)

The term in the numerator of the exponent is the two norm
weighted by a Gaussian kernel with standard deviation
σNLM,2 thus giving higher weight to pixels closer to the
center of patches. The tunable parameters in the NLM
algorithm are the patch size, the search window size, and
the two standard deviation parameters σNLM,1, σNLM,2.

3.3 Metrics

In this project two metrics are used for comparing the
performance of different denoising techniques: peak signal
to noise ratio (PSNR) and structural similarity index (SSIM).
With x and y representing the vectorized clean and noisy
images respectively the metrics are given by

PSNR(x, y) = 20 log10

(
max {x}
||x− y||22

)
, (18)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (19)

where µx and µy are the means of x and y respectively.
Similarly σ2

x and σ2
y are the variances of x and y while σxy

is the covariance. The two constants are set to c1 = (0.01L)2

and c2 = (0.03L)2 where L is the dynamic range.

4 RESULTS

4.1 Parameter tuning

The results are obtained by applying denoising to images
with zero mean Gaussian noise with σ = 0.1. For WNNM
a number of parameters are available for tuning to im-
prove performance namely the weights constant c, patch
and search window sizes, number of similar patches n,
regularization constant δ, and the number of outer iterations
K . Patch and search window sizes are limited by computa-
tional time considerations and were chosen to be 6 × 6 and
18×18 respectively. The remaining 4 parameters were tuned
in pairs. First K = 3 and δ = 0.1 were fixed while c and n
were varied. The results are shown in figure 1. Based on the
results c = 0.005 and n = 50 were chosen. With c and n
fixed K and δ were varied with the results shown in figure
2. It can be seen that K = 3 and δ = 0.1 achieve optimal
results. Note that different random noise is introduced in
the two tuning runs.

For Gaussian, Bilateral, and NLM filter parameters that
achieve the best performance on a set of 15 grayscale images
are chosen namely σG = σB,1 = σNLM,1 = 0.9, σB,2 = 0.4,
and σNLM,2 = 0.1. For NLM the same patch and search
window size as for WNNM are used and the remaining two
parameters are specified based on the results .

4.2 Comparison of denoising techniques

In this section we compare the denoising performance of
the four methods. Figures 3 and 4 show sample images
denoised using different techniques with PSNR and SSIM
values in the captions. As expected NLM and WNNM
approaches achieve superior visual quality when compared
to Gaussian and Bilateral filters. When compared to NLM,
WNNM seems to be better at discerning edges and gra-
dients while somewhat struggling with uniform patches.
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(a) Clean (b) Noisy. PSNR = 20.09

(c) WNNM denoised with c = 0.01 and
n = 20. PSNR = 29.07

(d) WNNM denoised with c = 0.005
and n = 20. PSNR = 27.55

(e) WNNM denoised with c = 0.001
and n = 20. PSNR = 26.22

(f) WNNM denoised with c = 0.01 and
n = 50. PSNR = 29.36

(g) WNNM denoised with c = 0.005
and n = 50. PSNR = 29.41

(h) WNNM denoised with c = 0.001
and n = 50. PSNR = 29.39

(i) WNNM denoised with c = 0.01 and
n = 100. PSNR = 29.10

(j) WNNM denoised with c = 0.005
and n = 50. PSNR = 29.17

(k) WNNM denoised with c = 0.001
and n = 50. PSNR = 29.21

Fig. 1: WNNM results for different values of parameters c and n with K = 3 and δ = 0.1
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(a) Clean (b) Noisy. PSNR = 20.10 (c) WNNM denoised with K = 1.
PSNR = 24.29

(d) WNNM denoised with K = 3 and
δ = 0.05. PSNR = 29.32

(e) WNNM denoised with K = 3 and
δ = 0.1. PSNR = 29.37

(f) WNNM denoised with K = 3 and
δ = 0.25. PSNR = 29.37

(g) WNNM denoised with K = 5 and
δ = 0.05. PSNR = 28.53

(h) WNNM denoised with K = 5 and
δ = 0.1. PSNR = 28.74

(i) WNNM denoised with K = 5 and
δ = 0.25. PSNR = 29.24

Fig. 2: WNNM results for different values of parameters K and δ with c = 0.005 and n = 50
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(a) Clean (b) Noisy
PSNR = 20.31
SSIM = 0.39

(c) Gaussian filter
PSNR = 28.67
SSIM = 0.83

(d) Bilateral filter
PSNR = 28.38
SSIM = 0.81

(e) NLM
PSNR = 29.49
SSIM = 0.88

(f) WNNM
PSNR = 31.70
SSIM = 0.93

Fig. 3: Clean, noisy (zero mean Gaussian noise with σ = 0.1), and denoised images produced using the different methods.

(a) Clean (b) Noisy
PSNR = 20.64
SSIM = 0.51

(c) Gaussian filter
PSNR = 26.37
SSIM = 0.78

(d) Bilateral filter
PSNR = 26.62
SSIM = 0.78

(e) NLM
PSNR = 26.45
SSIM = 0.78

(f) WNNM
PSNR = 27.43
SSIM = 0.81

Fig. 4: Clean, noisy (zero mean Gaussian noise with σ = 0.1), and denoised images produced using the different methods.

TABLE 1: Average PSNR and SSIM values achieved when
denoising is applied to a set of 15 images with zero mean
Gaussian noise σ = 0.1.

PSNR SSIM

Noisy 20.22 0.49
Gaussian 26.36 0.80
Bilateral 26.61 0.80

NLM 26.97 0.82
WNNM 28.40 0.86

On the basis of the two metrics used WNNM comfortably
outperforms the other approaches.

Table 1 shows the average PSNR and SSIM values ob-
tained when different denoising techniques are applied to a
set of 15 grayscale test images. The average performance
obtained across different techniques is as expected with
WNNM coming out on top, followed by NLM, Bilateral,
and Gaussian filters.

4.3 Discussion of possible improvements

One limitation of the approach that has not been investi-
gated in this work is the importance of knowing the variance
of the noise as perfect specification has been provided to
the algorithm so far. This is something that would need to
be addressed when the algorithm is applied to real noisy
images.

A number of aspects of the implementation could be
improved. The algorithm could be vectorized in order to
reduce the required computational time, which currently
stands at around 2 minutes per outer loop iteration. Fur-
thermore better performance could potentially be achieved
by modifying the way similar patches are identified. Cur-
rently the distance metric is computed on the noisy patches

while what is actually of interest is the distance between
clean patches. An intermediate denoising algorithm could
be added such as simple low pass filtering of the patches
before the distance is computed to improve the similar patch
identification process. Finally more information could be
extracted from the estimated matrix of clean patches X̂j by
for example incorporating the obtained clean estimates of
all the similar patches into their original locations weighted
by the distance to the central patch.

5 CONCLUSIONS AND FURTHER WORK

In this work the WNNM algorithm was implemented for
image denoising. Details of the implementation were high-
lighted and discussed. Algorithm parameters were tuned
and the method was compared to other techniques inves-
tigated in the class namely Gaussian, Bilateral, and non-
local means filters. Sample images for visual assessment
of denoising performance were presented. PSNR and SSIM
metrics were computed across a set of 15 denoised greyscale
images. The results demonstrated significant improvement
achieved using WNNM over other approaches tested. A
number of possible further modifications to the algorithm
were also discussed.
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