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Comparison of Phase Retrieval Methods
Oliver Johnson

Abstract—Phase retrieval is a common problem that presents in many different fields. In this project several several phase retrieval
methods based on the alternating projections were compared and contrasted. These methods were Gerchberg–Saxton, Hybrid
Input-Output and Oversampling Smoothness. These methods were tested on the MNIST handwritten digit dataset and examples from
the BSDS300 dataset. It was found that Hybrid Input-Output and Oversampling Smoothness had higher performance, but their
performance could not reliably differentiated over the small test suite conducted in this report. Overall the results show the successful
application of these phase retrieval methods to test data.

Index Terms—Phase Retrieval
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1 INTRODUCTION

PHASE retrieval is an important problem in many fields
such as optics, single particle imaging, X-ray crystallog-

raphy, signal processing and diffraction imaging. In diffrac-
tion imaging, an object is placed in front of laser, and based
on how the light interacts with object, a diffraction pattern
emerges, and usually only the magnitude of this light can
be measured with a detector [1]. In order to fully reconstruct
the image we need magnitude and phase information and
trying to estimate the phase in this kind of situation is the
problem that phase detection seeks to solve. Mathematically
the problem involves recovering the entire signal x when
only the Fourier transform magnitude information |F(x)|
is known. This is a common situation for many other mea-
suring devices where particular systems may only record
magnitude information, but not phase information.

The difficulty is that the problem is fundamental ill-
posed. If a is a complex number indicating a point in Fourier
space, then any of aeiθ will have the same magntiude |a|.
Especially if the measurements are noisy, it can become
very difficult to reconstruct the original image [1]. How-
ever many methods have been able to achieve good phase
estimation with various methods, which are described in
related work. As shown in Figure 1 it is often the case that
the phase information in the FFT of the image is often more
important for reconstruction than the magnitude of the FTT
of the image.

In this project we seek to study and compare various
algorithms to solve the phase retrieval problem. We will
particularly focus on alternating projection methods tested
image samples on a variety of datasets.

2 RELATED WORK

One of the most fundamental methods in phase retrieval
is the Gerchberg–Saxton algorithm [2], which employs an
iterative method to retrieve the phase. In many cases mul-
tiple image measurements will be combined to give more
data to determine phase. Building on this, Fienup [3] intro-
duced several other methods, including the Hybrid input-
ouput algoirthm, which changed the object domain step
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to have a negative feedback term. This is one of the most
widely used and sucessful methods in phase detection. A
further extension of this is oversampling smoothness, which
helps address the problem of noisy Fourier magnitude data.
Recent methods also include PhaseLift [4], which uses a
method based on complex programming and matrix com-
pletion to estimate the phase. Signal sparsity has also been
used to give additional prior information [5]. Some more
recent work has used end-to-end deep learning methods
for phase retrieval, where a neural network is trained to
calculate the inverse mapping. Manekar et al. [6] employed
this approach and used the U-Net architecture and trained
on the MNIST handwritten dataset. They obtained good
qualitative performance, but did not undertake a thorough
quantitative comparison with other methods. They also
experimented with the effect of symmetries of the image on
learning. Deep learning methods might be especially useful
when there is specific imaging problem where the training
data can be used to make a deep learning model to solve the
inverse problem for this situation.

3 METHOD

3.1 Problem Formulation

For the general case, the phase retrieval problem can be
expressed as:

yk = |⟨ak,x⟩|2, k = 1, ...,M (1)

where x is the signal vector and ak are the measurement
vectors. For the case of Fourier phase retrieval this reduces
to the case where ak[n] = e−i2π kn

M [7]. This means that
equation 1 can be expressed as:

y = |DFT[x]|2 (2)

In general the recovery of the signal does not lead to a
unique solution. When trying to recover the original signal,
there are several trivial ambiguities that need to be con-
sidered. If the image undergoes any of the following three
transformation, then the Fourier transform magnitude will
be remain unchanged. The first is global phase shift, which
is where the entire image is shifted by a particular phase.
However for a real input image this is not as relevant, since
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(a) Image 1 (b) Magnitude from image 1, phase from image 2

(c) Image 2 (d) Magnitude from image 2, phase from image 1

Fig. 1: The FFT magnitude is switched in these two images, this shows that the phase contains comparatively more
information than the magnitude.

Fig. 2: Problem Definition

we always know that our signal is positive and real. The
second is conjugate inversion, which corresponds to a flip
of the (real) input image. The third is a spatial shift of the
image [7]. In the results section of this project there will be
examples of some of these phenomena.

3.2 Techniques applied

We propose to implement several phase retrieval algorithms
from the literature and apply them on the the MNIST dataset
[8] and BSDS300 dataset [9], and compare the relative per-
formance. The methods we propose to use are listed below:

• Gerchberg-Saxton algorithm (GS) [2]
• Hybrid Input–Output (HIO) [3]
• Oversampling Smoothness (OSS) [10]

Fig. 3: Alternating projection methods

The alternating projection methods switch between the ob-
ject and Fourier domains and apply various constraints as
shown in Figure 3.

The first three steps of the alternating projection methods
are described below:

1) Take Fourier transform of z[n] to obtain Z[k], i.e.

Z ′[k] = DFT[z[n]] (3)

2) Apply Fourier magnitude constraints:

Zi[k] = |X[k]| · Z[k]/|Z[k]| (4)
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3) Take inverse Fourier Transform of Z[k] to obtain
z′[n], i.e.

z′[n] = DFT−1[Z ′[k]] (5)

The fourth step differs depending on the method used. For
GS, this is a object-space magnitude constraint as

z[n] = |x[n]| · z′[n]/|z′[n]| (6)

For HIO, the fourth step is negative feedback term with pa-
rameter β ∈ (0, 1] and γ is the set of indices that contradict
the constraints in object space [7].

z[n] =

{
z′[n] n /∈ γ

z[n]− βz′[n] n ∈ γ
(7)

And for OSS, the fourth step switches to the Fourier
domain and applies a Gaussian filter in the off-support
region [7].

z′′[n] =

{
z′[n] n /∈ γ

z[n]− βz′[n] n ∈ γ
(8)

z[n] =

{
z′′[n] n /∈ γ

DFT[Z ′′[k]W [k]] n ∈ γ
(9)

where W [k] is a Gaussian function that decreases its vari-
ance as the iterations progress [10].

3.3 Oversampling of Fourier Transform

A standard approach to help solve these phase retrieval
problems is to oversample the Fourier transform. This
makes the problem slightly less overdetermined so it is
easier to solve. We know that taking the Fourier transform
of a zero-padded image gives the oversampled Fourier
transform of the image, so we zeropadded our image before
taking the Fourier Transform. This padding can then be used
as an additional constraint in the object domain.

Another approach is to use masks (that could be ran-
dom) that modify the image before the fourier transform
is applied. Since the masks are known, this essentially
increases the number number of equations available to solve
this underdetermined problem, so it is better posed. A
disadvantage of this approach is that multiple captures of
the same scene are required. Depending on the application
this may or may not be a problem. We did not apply masks
in this report but could be an avenue of future work.

4 RESULTS

Figure 4 shows the the recovery using the three methods
for the MNIST dataset with either no over sampling no no
oversampling applied.

Table 1 shows some PSNR values for various iteration
numbers for the large cat image (over-sampling applied),
and Figure 5 shows the images for 10000 iterations.

Figure 6 shows the results for a smaller section of the cat
image, but with N (0, 1) noise added to Fourier magnitudes.

TABLE 1: PSNR results for cat image

Number Iterations GE HIO OSS

10000 iterations 16.47 26.0 38.9
20000 iterations 16.3 72.0 58.2

5 DISCUSSION

The results show that the various phase detection methods
worked successfully on the test data. It is noted that without
the oversampling, the reconstruction of the MNIST digits is
fairly poor, although some remnants of the numbers can
be made out. Comparing similar results in the literature,
the end-to-end deep learning approach to phase retrieval
[6] which was trained on the MNIST dataset gave superior
results to the ones we have presented here (clear represen-
tations of the numbers). In this work the authors did not
oversample the Fourier transform. However, it is possible
that their approach is highly specialized for the MNIST
dataset only.

Note how for Figure 4 (a) sometimes the numbers wrap
around the edge, but for (b) they do not. This is because
the masking operation in (b) has effectively constrained the
image so it must appear in one connected piece inside the
boundaries. Since around each character, the pixel values are
zero, the digit is free to shift in the object domain up until the
edge of the digit without changing the Fourier magnitude.
In the oversampled signal the mask effectively constrains
the digit to appear all in one piece.

Comparing the various methods for the oversampled
case, it is noted that HIO and OSS seem to almost perfectly
reconstruct the digits (up to a rotation/shift). given by [6],
The PSNR was not calculated for these examples as due to
the shifting behaviour of the output due the result would
not have much meaning. We instead calculated the PSNR
where the edges of the image were not zero valued so that it
would easier to align the reconstructed image to the output.

Considering Figure 5, it can be seen that HIO and OSS
reconstruct the original image quite well. While OSS did
to better on this iteration, it was found that this was quite
variable, and sometimes HIO would perform better.

Table 1 shows that the reconstruction ability perfor-
mance of GE was worse than HIO and OSS. However, for
the tests conducted, HIO and OSS could not be reliably
differentiated. It was found that the performance was highly
variable depending on the run, so the two methods could
not reliably be differentiated statistically in the time given.
In the future it would be better to run these algorithms with
more initial conditions on a wider set of images so they can
be more reliably compared. It would also be good to further
characterize the effect of adding noise to the Fourier magni-
tude coefficients to simulate a real measurement situation.

6 LIMITATIONS AND FUTURE WORK

One limitation of this report is that it only considered
simulated data, not raw measurements from an actual ex-
periment, which would have provided a better indication
of how these techniques worked in the real world. The
testing could also have been completed on a wider dataset,
as the outputs of the alternating-projection methods are
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(a) No oversampling applied (b) Oversampling applied

Fig. 4: Phase Retrievals from the MNIST dataset

(a) Original Image (b) GE

(c) HIO (d) OSS

Fig. 5: Methods applied to image from BSDS300 dataset. This corresponds to the PSNR values in column 1 in table 1 (10000
iterations).

fairly sensitive and sometimes inconsistent, so the results
presented here might not be representative of the wider
context. It would also be desirable to test some more modern

approaches such as PhaseLift, and deep learning based
methods, however there was not time to implement these
methods for this report. It would also be good to further
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(a) Original Image (b) GE. PSNR = 15.42

(c) HIO. PSNR = 19.55 (d) OSS. PSNR = 20.33

Fig. 6: Methods applied to image from BSDS300 dataset. In this case noise (zero mean, variance of one Gaussian) was
added to the Fourier magnitudes. This test was repeated 10 times to give an estimate of the benefit in noise performance
for OSS (Only one image is shown, but PSNR values are averaged). Qualitatively it looks as if OSS has slightly less wide
ripples in the reconstruction.

characterize the noise added the Fourier magnitudes, as the
OSS method did not see a large improvement. It is also
suggested to use a different distribution of noise, such as
Possion (photon noise), which may be more realistic for the
typical measurement scenario when capturing data.

7 CONCLUSION

This report has compared and contrasted several different
methods to reconstruct an image given only the magnitude
of the FFT. It was shown that HIO and OSS provided a
large improvement compared to GS when oversampling is
applied. Without oversampling applied while HIO and OSS
performed better, they still did not extract the finer details
of the image. The relationship between the noise and the
method used was unclear, so work needs to be done to
characterize the methods over a wider range of data.

8 CODE

The source code for this report is available at
https://github.com/oliver-johnson1/phase-retrieval
A part of the code was adapted from
https://github.com/hhu-machine-learning/phase-
retrieval-cgan, and the OSS MATLAB implementation
from the OSS article’s authors [10] was used to guide the
python implementation of the OSS method.
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