
1

Neural Radiance Fields (NERF) for Novel View
Synthesis

Chris Fritz,
E-mail: fritz17236@hotmail.com

Abstract—Novel view synthesis seeks to reconstruct a visual scene from an arbitrary viewpoint given sparse snapshots (images) of
the scene. Discrete methods such as voxel-grids can perform this task, but at the cost of prohibitively high 3D sample rates that quickly
exceed hardware capability, or conversely perform on hardware but at substantial degredation in image quality. Here, we reproduce
and study Neural Radiance Fields, an emerging approach that overcomes the classical limitations by leveraging a fully-connected
neural network (multilayer perceptron, MLP) in order to learn a dense representation of the visual scene and allow for photorealistic
view synthesis with more reasonable hardware requirements. We also briefly explore how the image synthesis quality varies as the
synthetic view is captured at subsequently larger distances from the nearest known snapshot used to train the network.

✦

1 INTRODUCTION

NOVEL view synthesis is a longstanding problem in
computer vision that seeks to infer unseen perspec-

tives of a visual scene from a set of existing viewpoints of
that scene. Synthesis assumes that the underlying visual
scene maintains constant geometric structure that is pre-
served under translation and rotation. The goal of synthesis
is then to first learn a representation of the underlying
visual scene, then generate views of the rotated object. Such
learned representations are analogous to a person’s ”mental
image” of an object, and the concept of view synthesis can be
traced back to early psychophysical experiments requiring
subjects to reason about unseen rigid transformations of a
known object [1]

The specific problem here is sketched in figure (1). We
seek to learn a dense representation from a sparse set of
known views of a visual scene. By dense representation,
we mean that the scene can be queried by placing a virtual
camera at an arbitrary location in space, pointing it at an
arbitrary direction, and expecting a photorealistic view of
the original scene. By sparse known views, we mean that
the only information we have concerning the visual scene is
a finite set of photographs of some resolution, taken of the
visual scene by a camera at known positions and directions.
Once we have learned this dense representation, we can
synthesize novel viewpoints by querying the learned rep-
resentation from the viewpoint of a virtual camera placed at
our desired synthesis point of view.

2 RELATED WORK

View synthesis requires a geometric and color representa-
tion that preserves the intrinsic aspects of the visual scene.
Prior work focusing on finding these representations can
be roughly divided into two classes: 1) ”classic” discrete
techniques that sought to use input images to fill samples

• Chris Fritz is with the Department of Electrical Engineering, Stanford
University Stanford, CA, 9403.

of a 3D grid [2] [3], and 2) ”modern” discrete techniques
that sought to leverage neural networks to learn the rep-
resentation directly by minimizing a loss function [4] [5].
The former methods, while conceptually straightforward
are inefficient due to the poor scaling properties of sampling
a 3D volume with subsequently higher resolution. While
the latter methods have in some cases circumvented the
poor scaling by using e.g. convolutial networks (CNNs) to
address low-resolution artifacts [6], both types of methods
are fundamentally limited in the sense that they seek to
discretely represent the visual scene at a fixed sampling
rate. Conversely, NERF encodes a continuous volumetric
representation, avoiding the disadvantages and limitations
of discrete sampling altogether.

3 PROPOSED METHOD

Neural Radiance Fields (NERF) [7] generate image represen-
tations as shown in figure (2). Briefly, a virtual camera at a
desired viewpoint is first specified. Next, rays are cast from
that camera into the visual scene. Multiple samples along
these rays form position and direction query points which
are then passed through the neural network and integrated
to form the pixel value of the output image. The output
image is then compared to the target image via mean-
square-error (MSE) in order to generate a loss function that
trains the network. We describe this process in more detail
in the following sections.

3.1 Scene Representation with a Neural Radiance Field
To represent the scene in NERF, we train a neural network
to learn a mapping from a pair of position-direction vectors,
written as (x, d) ∈ R6 to a 4-vector containing red, green,
and blue color channels, and a sclar volumetric density σ,
written as (c, σ) ∈ R4. This mapping is termed the Neural
Radiance Field, since it defines a 4-vector field with a 6-
dimensional coordinate system. Formally,

FΘ : R6 → R4.



2

Fig. 1. Sketch of the Visual Synthesis Problem. Left: A visual scene is sparsely sampled via snapshots (images) taken by a camera of known position
and direction. Middle: The sparse input is used to learn an arbitrarily dense representation of the visual scene. Right: The learned representation
can then be queried to synthesize a novel view of the scene.

Fig. 2. Overview of the NERF Rendering Pipeline. (1) To render an image, a virtual camera at the desired viewpoint is first specified, giving an
image plane where the output image will be populated. Rays are case from the camera position through the center of each pixel. (2) Each cast ray
is sampled repeatedly so that the resulting position and directions along the ray are passed to the network. The network accepts the queries as
input, and returns a 4-vector containing color and volumetric density as output. (3) The resulting color and density are integrated along the ray to
give afinal output color for a given pixel. The mean-square error (MSE) between the true image view and the output image form the loss used to
train the neural network.(The volumetric rendering integration is differentiable).

Since this is the conceptual basis of NERF, we could
represent the scene as written and proceed to train a neu-
ral network. However, we would find that the represen-
tation struggles to capture high-resolution details, leading
to oversmoothed geometry and more generally loss of fine
detail. This loss of high-frequency content appears to be
caused by an intrinsic low-frequency bias inherent to deep
neural networks [8]. To address this bias, NERF embeds
its coordinate input to a higher-dimensional space using
functions with high frequency content. Specifically, NERF
specifies an embedding dimension L and defines the map-

ping γ : R → R2L where

γ(x) =


sin(20πx)
cos(20πx)

...
sin(2L−1πx)
cos(2L−1πx),


is applied to each dimension of the network input. This
high-dimensional mapping is referred to as positional encod-
ing, and substantially improves scene reconstruction perfor-
mance. All that remains to specifying the scene represen-
tation is to normalize the position direction values to the



3

range [−1, 1].
The neural network architecture underlying FΘ is shown

in figure (3). The network is a multilayer perceptron (fully
connected feed-forward neural network) featuring 8 hidden
layers. Each layer contains 256 channels and all but one
use a ReLU activation functions. To encourage the network
to learn separate representations of position and direction
(rather than learn both simultaneously), the position and
direction input are first separated. The (positional-encoded)
position is fed into top layer of the network, and runs
through the network until the final hidden layer. Note that a
skip connection re-injects the input at the 4th hidden layer.
At the final hidden layer, the volumetric density σ is peeled
off as output and the positional-encoded direction vector
is injected (concatenated) with the remainin goutput before
being fed to an output layer with 128 channels. A final
sigmoid is applied to the final layer’s output to get the RGB
channel values.

3.2 Volumetric Rendering of Network Output
Given the the network output, an image is rendered is
rendered as previously described in figure (2). A ray

r(t) = o+ td

is cast through the center of each camera pixel we wish
to render. Computing the color of the ray is performed by
estimating the path integral

C(r) =

∫ tf

tn

T (t) · σ(r(t)) · c(r(t))dt

where tn and tf specify the near and far clipping planes of
the view frustum respectively, c(r(t)) and σ(r(t)) are the
network outputs, and

T (t) = exp(−
∫ t

tn

σ(r(s))ds).

In our implementation, this is performed in three steps:
1) To ensure the network is queried along a continuous
space (and not a fixed set of discrete locations), the ray along
the view frustum (tn ≤ t ≤ tf ) is divided into N bins and a
sample is drawn uniformly from each bin, a strategy termed
stratified sampling. Each sample is given by

ti ∼ Uniform(tn +
i− 1

N
(tf − tn), tn +

i

N
(tf − tn)).

The resulting positions (sample locations), and directions
(ray direction) form a set of query points passed to the net-
work model. 2) The network is evaluated at the given query
points to get a volumetric density and RGB color. 3) The
integral above is approximated by a numerical quadrature
rule discussed in [9]. The integrals above become the sums

Ĉ(r) =
∑
i

Ti(1− exp(−σiδi))ci,

Ti = exp

−
i−1∑
j=1

σjδj

 ,

where δi = ti+1 − ti. The preceding method can is used to
render a pixel and consequently an entire image by querying
the NERF. Because the rendering process is differentiable,

the resulting image can be compared with a training image
and used as a loss within a back-propagation algorithm to
train the network.

To avoid overloading GPU memory, we split the im-
ages into sub-blocks, rendered each sub-block as described
above, and updated network parameters for that sub-block.
In addition to reducing the video memory footprint at of
the program, this approach also served to regularize the
network, analogously to batched gradient descent.

Performance of the network can be extended further by
a Hierarchical Sampling Scheme. In this scheme, two NERF
networks are simultaneously trained. One network - termed
coarse - is used to sample the scene at a lower resolution as
previously described. The coarse sampling produce weights
that are normalized to form a probability distribution. The
weights are given by

wi = Ti(1− exp(−σiδi)).

After normalization of the weights, the resulting PDF is
sampled to produce a fine-resolution set of query points
that are importance-sampled, i.e their distribution is fit to
sample the visual scene preferentially at areas of higher
density. These fine-query points are concatenated to the
coarse query points before being passed through a fine-
grained network to get an output image. Both networks are
trained in tandem.

4 EXPERIMENTAL RESULTS

We implement the architecture described in section 3 using
PyTorch, a deep learning framework for the Python pro-
gramming language. [10]. The implementation formed the
bulk of this work. To compare NERF with other synthesis
methods, we refer the reader to table 1 and figures 5 and 6 of
the original NERF paper [7]. To quantify the impact of each
model feature (positional encoding, hierarchical sampling,
view-direction dependence), ablation studies for NERF are
recapitulated in figure (5). Metrics are over 8 synthetic
scenes. Due due to the extensive hardware overhead of an
additional network, and the relatively small performance
improvement (approximately 3%), we implemented hierar-
chical sampling, but elected not to use it in order to obtain a
feasible training iteration speed on a personal GPU (Nvidia
RTX 3080 Ti), whereas the original NERF was trained exten-
sively on an industrial GPU (Nvidia V100).

A sample of our network output is shown in figure (6).
In this case, we trained the network on the hotdog synthetic
dataset, which consists of 100 images and poses of a hotdog,
where each image is 800× 800 pixels. The synthetic output
is best understood by viewing the supplementary video
material.

In addition to reproducing NERF results above, we also
explore the performance of NERF inference as a function of
distance from the nearest training point. Since each NERF
is trained on a sparse set of images, we expect NERF
performance to be highest when the network is evaluated at
those training points. When inferring novel views, however
the performance of the network is less clear. We evaluate
the likelihood of two somewhat conflicting hypotheses: 1)
Inference performance (PSNR) degrades as the euclidean



4

Fig. 3. Nerf Network Hierarchy. The network consists of 1 input and 8 hidden layers each having 256 channels per layer and fully connected. The
last output layer consists of 128 channels. Position and directional are split then embedded into a higher-dimensional space via positional encoding.
Position input are fed into the top of the network with a reinjection (skip connection) at the fourth hidden layer. Density output σ is extracted from the
last hidden layer before direction input and the result fed into the output layer to produce RGB color values. Black arrows denote ReLU Activation
functions, the orange arrow denotes no activation function (identity), and the dotted arrow denotes the sigmoidal activation function.

distance to the nearest training image/pose increases 2)
Inference performance initially degrades with euclidean
distance, but quickly reaches a floor corresponding to an
accurate dense representation of the visual scene. The for-
mer hypothesis is intuitive: the further we query the net-
work from a known (ground-truth) location, the worse we
expect the network perform. The latter hypothesis reflects
the design choices meant to make the representation dense,
i.e continuous between image sample points.

To evaluate these hypotheses we study the performance
of a hold-out test set of images/poses. In particular, we 1)
Generate the network output at the test pose location, 2)
compute PSNR of the output image versus the ground truth
test image. 3) Find the nearest training image/pose sample
by Euclidean distance of the respective camera locations.
We plot the resulting PSNR vs distance for the test-set in
figure (4). Note that the correlation is negative, but weak
(ρ = −0.048), suggesting a tenuous negative relationship
between test-image prediction quality and Euclidean dis-
tance to the nearest training point. This observation is
consistent with hypothesis 2. A limitation of this approach
is that it does not factor direction when comparing the
distance between two images/poses - e.g two images/poses
might be next to each other but rotated 180 degree about the
y-axis with respect to one another. To explore this possibil-
ity, we performed the same experiement, but with angular
distance. Instead of selecting images by Euclidean distance,
we computed their rotations about the xyz-axes, and formed
a 3-vector which then we computed the Euclidean distance
of. The results (not shown) were similar, giving (ρ = −0.65).

5 CONCLUSIONS & FURTHER WORK

At the time of release, Neural Radiance Fields provided state
of the art performance for the view synthesis problem, rep-
resenting a substantial advancement. NERF networks may

Fig. 4.

one day be embedded within a graphics pipeline as a tool
for rendering real-world object within a virtual environment
for use in applications such as mixed reality. Although
relatively recent, they have spawned numerous research
directions, with many focused on addressing limitations
of NERF. Here we briefly discuss two such limitations:
rendering cost, and transient features.

Rendering Cost: In NERF, a single ray is sampled hun-
dreds of times. This leads to prohibitively high computa-
tional costs to render an image on the order of Teraflops.
On modern consumer graphics hardware (Nvidia RTX 2080
Ti), rendering a single 800 × 800 frames takes roughly
10 seconds. Performance extensions of NERF address e.g.
via ”baking” storage of a NERF representation in more
efficient data structures for supporting real-time rendering



5

Fig. 5. Ablation Study for NERF Model Features. Reproduced from [7]. PE = Positional Encoding, whether or not to pass input to high-dimensional
embedding before passing to network; VD = View-Dependence, whether or not to include directional input to the network at all; H/Hierarchical =
Hierarchical Sampling, whether or not to train two networks, using one to draw a sample distribution for the other. PSNR = Peak-signal-to-noise
ratio, SSIM = structural similarity index, LPIPS = Learned perceptual image patch similarity, Nc, Nf = number of coarse and fine samples (fine only
if using H sampling)., L = positional encoding dimension.

Fig. 6. Top: Input images and poses used to train NERF network.
Bottom: Synthesized novel view. The network was trained on the
hotdog synthetic dataset available at the original author’s website
[https://www.matthewtancik.com/nerf]. Readers are encouraged to view
supplementary video.

on conventional hardware [11].
Transient Features: An implicit assumption within NERF

is that all the image samples are taken under the same
lighting and occlusion conditions. Many real-world samples
violate these controlled conditions. For example, tourist
photos of the Fontana di Trevi occur under a wide variety
of lighting (day, night, overcast), and occlusion (person
/ object in frame) conditions. To address these transient
features, NERF in the Wild (NERF-W) extends NERF to
simultaneously learn a transient embedding that is super-
imposed on top of the constant features of the visual scene
[12].

REFERENCES

[1] J. S. McGee, C. van der Zaag, J. G. Buckwalter, M. Thiébaux,
A. Van Rooyen, U. Neumann, D. Sisemore, and A. A. Rizzo,
“Issues for the assessment of visuospatial skills in older adults
using virtual environment technology,” CyberPsychology & Behav-
ior, vol. 3, no. 3, pp. 469–482, 2000.

[2] K. N. Kutulakos and S. M. Seitz, “A theory of shape by space
carving,” in Proceedings of the Seventh IEEE International Conference
on Computer Vision, vol. 1. IEEE, 1999, pp. 307–314.

[3] S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction
by voxel coloring,” International Journal of Computer Vision, vol. 35,
no. 2, pp. 151–173, 1999.

[4] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove, “Deepsdf: Learning continuous signed distance functions
for shape representation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 165–174.

[5] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. S.
Overbeck, N. Snavely, and R. Tucker, “Deepview: High-quality
view synthesis by learned gradient descent,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. [Online].
Available: https://arxiv.org/abs/1906.07316

[6] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and
M. Zollhofer, “Deepvoxels: Learning persistent 3d feature em-
beddings,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2437–2446.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural radi-
ance fields for view synthesis,” in European conference on computer
vision. Springer, 2020, pp. 405–421.

[8] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, and A. Courville, “On the spectral bias of neural
networks,” in International Conference on Machine Learning. PMLR,
2019, pp. 5301–5310.

[9] N. Max, “Optical models for direct volume rendering,” IEEE
Transactions on Visualization and Computer Graphics, vol. 1, no. 2,
pp. 99–108, 1995.

[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[11] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and
P. Debevec, “Baking neural radiance fields for real-time view

https://arxiv.org/abs/1906.07316
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


6

synthesis,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 5875–5884.

[12] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Doso-
vitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance
fields for unconstrained photo collections,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 7210–7219.


	Introduction
	Related Work
	Proposed Method
	Scene Representation with a Neural Radiance Field
	Volumetric Rendering of Network Output

	Experimental Results
	Conclusions & Further Work
	References

