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Abstract

Single image depth estimation has become critical for
lots of applications. However, most existing methods only
focus on images without noise and they perform poorly for
noisy images. In this work, we propose a learning based
depth estimation method combined with denoise filtering.
Specifically, we explore a network architecture consisting
of an encoder, decoder, multi-scale feature fusion module,
and refinement module. For the denoise filtering, we explore
the median filter and bilateral filter. Experimental results
show that the bilateral filter improves the performance of
single noisy image depth estimation while median filter has
negative effect on it.

1. Introduction

Depth estimation has become critical for autonomous
driving[5], scene recognition[19], and human computer
interaction[11]. Traditional depth estimation methods, like
structure from motion and stereo vision matching, are built
on feature correspondences of multiple viewpoints. In-
ferring depth information from a single image (monocu-
lar depth estimation) is an ill-posed problem since lots of
stereoscopic information is lost. Therefore, many applica-
tions of depth estimation rely on lots of different data be-
sides a single image.

One of most popular approach is to recover the 3D struc-
tures from a couple of images based on geometric con-
straints, and it has been widely investigated in recent forty
years. In addition, sensors like RGB-D cameras and LI-
DAR are commonly used to get more depth information of
the corresponding image. Although those methods achieve
very good performances [9], these methods usually depend
on image pairs or image sequences which are very diffi-
cult to collect in some scenarios. Moreover, the large size
and power consumption of these depth sensors (RGB-D
cameras and LIDAR) restricts their applications from small
robotics, like drones, which is not even practical in some
cases.

2. Related Work

With the rapid development of deep neural networks,
monocular depth estimation based on deep learning has
been widely studied recently and achieved promising per-
formance in accuracy [6]. A variety of neural networks
have manifested their effectiveness to address the monoc-
ular depth estimation, such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), varia-
tional auto-encoders (VAEs) and generative adversarial net-
works (GANs) [4].

However, most of the work based on deep learning fo-
cus on images without much measurement noise. Although
there is work exploring the robustness of the network on
noisy images [15], the performance in general is not very
well since the model is still trained on images without noise.
There are some works using an end-to-end network model
to estimate the depth from single noise image. The work
[1] explores and designs an end-to-end CNN to estimate the
depth from monocular blurry image. The work [10] designs
an huge end-to-end model to estimate the depth from a night
image in very bad light condition. However, the end-to-end
models in those work are extremely large and diffcult to
train since in general it is a very hard task to distinguish
edges with noise without any prior knowledge of the noise.

In this work, we try to explore a two-stage process for
single image depth estimation task. We will denoise the
image first before feeding into the network. With the help
of denoising from a simple denoiser, it will be easier for the
network to learn and train.

3. Analysis and Evaluation

In summary, the problem in our task can be split into
two stages. In the first stage, we explore several differ-
ent common denoising techniques with the assumption and
prior knowledge that gaussian noise is added to RGB im-
age. In the second stage, we will use a medium size neural
network to estimate the depth from the denoised image. For
the neural network, we use multi-scale feature fusion and
encoder-decoder structure. In addition, we are motivated
by the previous studies on statistical properties of range im-
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Figure 1. Ground Truth RGB image

Figure 2. Ground Truth Viridis Depth Map

ages of natural scenes [16], and use the depth difference,
norm difference and gradients altogether to form the loss.

For the input, we will use the NYU-Depth V2 dataset
[12] which consists of a variety of indoor scenes, and is the
most widely used for the task of single view depth predic-
tion. An example of RGB and depth pair of NYU-Depth V2
dataset is shown in figure 1 and figure 2.

Specifically, we use the official splits for 464 scenes, i.e.,
249 scenes for training and 215 scenes for testing. Follow-
ing suggestion in work [7], we downsample images from
original size (640 × 480) to 320 × 240 pixels using bilinear
interpolation, and then crop their central parts to obtain im-
ages with 304 × 228 pixels. For training, the depth maps are
downsampled to 114 × 152 to fit the size of output.

For evaluation, we use the following accuracy measures
that are commonly employed in the previous studie [7]:

Root mean square error (RMSE)
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Note that the total number of pixels used in all evaluated
images is denoted by P.

4. Theory and Method
For the denoising task, we will explore two very com-

monly used denoising technique. The first denoising
method is the median filter [2], which is a non-linear fil-
ter often used to remove noise from an image with good
result. The median filter is very simple to implement but
it is not aware of the spatial location of each pixel. In ad-
dition, another big disadvantage is that it is difficult write
an analytical equation to represent a median filter. The sec-
ond denoising method we explore is a more advanced tech-
nique called bilateral filter [14] which is a non-linear, edge-
preserving, and noise-reducing smoothing filter for images.
The bilateral filter weights the intensity of each pixel with
the average of intensity values from nearby pixels. In our
implementation, we use the Gaussian distribution for this
weight. The bilateral filter is defined as

Ifiltered =
1

Wp

∑
xi∈Ω
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Both filters have been shown to perform good results
with efficient denoising time [14]. Although there are more
advanced denoising filters, those techiniques with long de-
noising time is not suitable for our application.



Figure 3. An illustration of the overall model with denoiser and MFF

For the depth estimation part, inspired by the work [8],
we use a network architecture consists of four modules:
an encoder (E), a decoder (D), a multi-scale feature fusion
module (MFF), and a refinement module (R). As shown
in the figure 3, the encoder (E) extracts features at multi-
ple scales and levels. In our implementation, we use the
ResNet-50 [13] as the encoder. The decoder uses four up-
sampling blocks to gradually up-scale the output from the
encoder while decreasing the number of channels. In this
work, we also explore the usage of the MFF module, which
merge four different scale features from the encoder by per-
forming channel-wise concatenation. We expect that the
MFF module could help the model to better learn the fea-
tures at different scales as shown in the work [8]. In the end,
a refinement module consisted of three convolutional layers
is used to give the final prediction for the depth map.

For the loss of our model, we are largely inspired by the
work [8]. Specifically, we define the loss as the summation
of three parts: depth errors, gradients of depth, and normal
errors. Assume that the depth estimate is di and its ground
truth is gi. For the depth errors, we use the logarithm of
depth errors:

ldepth =
1

n

n∑
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log(∥di − gi∥1 + α)

The α is a constant. We use the logarithm scale to put more
importance on nearby points and less importance on distant
points [16]. We use the l1 norm but we could also use l2
norm as shown in the work [15].

For the loss of the gradients of depth, we are inspired by

the work [17] and define it as:
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It has been shown in the work [8] that this loss is very effi-
cient to remove errors around edges.

For the normal loss, we are inspired by the work [16] and
define it as:
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T are the surface normals of the

estimated depth map and its ground truth. As shown
by the previous work [8], this loss term measures the
angle between two surface normals, and is very useful for
detecting small depth structures.

5. Results
We use the 8000 uniformly sampled rgb-depth pair of

images as training samples to train all four models: without
denoise and without MFF, without denoise and with MFF,
with median filter denoise and with MFF, with bilateral filter
and with MFF. For each model, we add a Gaussian noise
level of σ=0.1 to the RGB image input. An example of
figure with added noise is shown in figure 4. For all models,
we use batch size 8 and learning rate 0.0001. We train for 5
epoches.

With each trained model, we evaluate the model with
150 unseen rgb-depth image pairs. We use the evaluation
metrics mentioned in the problem statement to measure the



accuracy of each image, and take the average among all 150
test samples. Each model’s test result is shown in figure 5.

Figure 4. Input RGB image with noise level σ=0.1

5.1. Without denoise and without MFF

One sample output trained with this model, and the train-
ing loss are shown in figure 6 and 7. We observe that the
training loss is steadily decreasing.

Figure 6. Predicted viridis depth map on noise level σ=0.1 with-
out denoise without MFF trained with 8000 training samples for 5
epoches

5.2. Without denoise and with MFF

One sample output trained with this model, and the train-
ing loss are shown in figure 8 and 9. We observe that the
training loss is steadily decreasing. Compared to the loss
curve for the model without MFF, we could see that the loss
for the model with MFF drops more quickly with smaller
oscillation.

In comparison to the model without MFF in figure 6, the
model with MFF is much better at capture small details.
For example, the legs of the table could be clearly visual-
ized in figure 8 while they are hard to distinguish from the

background in figure 6. In addition, the door in figure 8
has better shapes and structure. However, compared with
the ground truth in figure 2, we observe that there are still
a lot more rooms for improvement. Although the shape of
the table and space structure of the room are learned by the
models, many small details are lost. For example, the win-
dow in figure 8 is almost lost which may be caused by the
fact the depth of the window is too close to the depth of the
background wall.

From the quantitative test result, we could observe that
the model with MFF outperforms the model without MFF
in all metrics. This demonstrates that MFF positively im-
proves the performance of the network by integrating infor-
mation from all scales in the encoder.

Figure 8. Predicted viridis depth map on noise level σ=0.1 with-
out denoise with MFF trained with 8000 training samples for 5
epoches

Figure 9. Training loss on noise level σ=0.1 without denoise with
MFF trained with 8000 training samples for 5 epoches

5.3. With median filter denoise and with MFF

One sample output trained with this model, and the train-
ing loss are shown in figure 10 and 11. We observe that the
training loss is steadily decreasing. Compared to the loss
curve for the model without denoise filter, we could see that



Figure 5. Trained Model Test Result

Figure 7. Training loss on noise level σ=0.1 without denoise with-
out MFF trained with 8000 training samples for 5 epoches

the loss for the model with median filter has larger oscilla-
tion.

From the predicted depth map we observe that the model
is still unable to capture the shape of the window on the
top right corner. The model is also unable to capture the
correct depth estimation of the table. Compared with the
ground truth and the model trained without denoise with
MFF, we observe that the back left and back right part of
table are both lighter blue, indicating it is further into the
image plane. However, in this model’s estimation, the left
back part of the table is darker blue, indicating it is closer
to the image plane, which is inaccurate. In summary, we
could obviously observe that the model with median filter
has worse depth map than the models without denoise.

From the quantitative test result, this model achieves the
worst performance among all the models. One reason may
be that the median filter smooth out the edges in the im-
age, so it increases the level of difficulty to recover depth
estimation.

Figure 10. Predicted viridis depth map on noise level σ=0.1 with
median denoise filter with MFF trained with 8000 training samples
for 5 epoches

Figure 11. Training loss on noise level σ=0.1 with median filter de-
noise with MFF trained with 8000 training samples for 5 epoches

5.4. With bilateral filter denoise and with MFF

One sample output trained with this model, and the train-
ing loss are shown in figure 12 and 13. We observe that the
training loss is steadily decreasing. Among all of model



tested, we could see that the loss for the model with bilat-
eral filter has the largest drop rate with smallest oscillation.

From the predicted depth map we observe that the model
is able to capture some contour of the window on the top
right corner. The model is also able to capture the depth
information of the table, and the contour of the small sofa.

From the quantitative test result, this model achieves the
best performance among all the models. One reason bilat-
eral filter outperforms the median filter may be the bilat-
eral filter not only depends on the distance among pixels
but also the intensity among pixels, and therefore is better
at preserving edges.

Figure 12. Predicted viridis depth map on noise level σ=0.1 with
bilateral denoise with MFF trained with 8000 training samples for
5 epoches

Figure 13. Training loss on noise level σ=0.1 with bilateral fil-
ter denoise with MFF trained with 8000 training samples for 5
epoches

6. Discussion and Future Work
In this work, we explore the effect of 2 different denoise

techniques on the single noisy image depth estimation us-
ing learning based approach. We also explore the effect of
multi-feature fusion model for depth estimation. For the

network, it consists of 4 parts: encoder, decoder, MMF and
refinement layer. We observe that the bilateral filter is more
suitable for depth estimation than the median filter since it
is better at preserving the edges in the image while the me-
dian filter tends to smooth out the edges. We also observe
that the multi-feature fusion model could help the model to
train and learn better by integrating information from mul-
tiple scales.

There are several limitation in this project. First of all,
we assume that the noise is Gaussian distributed which may
not hold true in real applications. In many applications, we
may not have any prior knowledge about the distribution of
the noise. Moreover, although the denoise filter may pro-
duce a image that visually looks better, it does smooth out
small details or even objects in the image which could not
be recovered by the depth estimation network. Although
the final depth map may have good values on the evaluation
metrics, the lost object could has very serious impact in real
world application like autonomous driving. In addition, it
takes longer time to train the model once the denoise filter
becomes more computationally heavy.

For the future work, we want to explore more advanced
denoise techniques such as the family of non-local mean
filters like BM3D [3]. However, one potential challenge of
those advanced denoising techniques is that they are much
more computationally expensive than the median filter and
bilateral filter. In this work, we only explore the noisy im-
age and the effect of denoise for depth estimation. However,
it is also worth to explore the blurry image and the effect of
deblurring for depth estimation. In addition, we also want to
explore the neural network based denoising techniques such
as DnCNN [18] for the single noisy image depth estima-
tion. It is also interesting to explore an end-to-end pipeline
for depth estimation for noisy image and compare its per-
formance with our 2-stage model.

In conclusion, we observe that denoising could slightly
help the performance of single image depth estimation if
the denoise filter is chosen correctly. There is a tradeoff
between the complexity of the denoise filter and the com-
putational time. In our experiments, we observe that the bi-
lateral filter achieves the best performance for single noisy
image depth estimation.
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[19] S. Zia, B. Yüksel, D. Yüret, and Y. Yemez. Rgb-d object
recognition using deep convolutional neural networks, 2017.
1


