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Video Denoising with Local Linear Denoising
and Non-Local Means

Emil Vardar and Elin Byman

Abstract—Denoising of images is a well-studied subject, and some very sophisticated methods to denoise images already exist. The
denoising methods used for images could be used to denoise videos frame by frame, but we wanted to investigate how the similarities
between different frames could be taken advantage of to improve the denoising of videos. In this study, we implemented four different
denoising methods for videos, namely an averaging of successive frames, an averaging of successive frames with Gaussian distributed
weights, a non-local means algorithm that only searches for similar patches in the same frame, and a non-local means algorithm which
searches for similar patches in the same frame as well as in other frames in the video. Each of the methods was tested for different
parameters to find the best parameters. The results from each method were then compared with the state-of-the-art Video BM3D
method. The results show that the two averaging methods perform very poorly. The two non-local means methods perform much
better, but none of our methods can come close, regarding PSNR performance, to Video BM3D.

Index Terms—Video Denoising, Local Linear Denoising, Non-local Means Denoising, VBM3D
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1 INTRODUCTION

THE number of taken and shared images increase at a
fantastic rate with each day going by. The most im-

portant reason for this is that it is easier to take pictures
nowadays, as the cameras have shrunk enough to fit in
our cellphones. We can take out our cellphones from our
pockets, and by pressing three to four buttons, we can take
a high-quality picture. However, a tremendous amount of
calculations happen in the background after one pushes
the shutter button. Unfortunately, the images also get cor-
rupted by Gaussian noise while these calculations happen.
Primarily, the analog circuitry in the camera is the reason
for the Gaussian noise [1]. Therefore, even today, restoring
the ground truth image from a noisy image is a much-
researched topic.

To obtain a denoised image from a noisy image is called
denoising. In this project, we will look at how to denoise a
video. A video is a bunch of images shown one after another
at a high rate. Therefore, many image denoising techniques
can be adapted to video denoising with some minor changes
which we discuss in this paper.

2 RELATED WORK

There are already many image denoising algorithms that el-
egantly remove Gaussian noise. One of them is the non-local
mean denoiser. This denoising algorithm is about searching
for similar patches in the image and combining these in a
sensibly way so that the noise is eliminated [2]. The non-
local means algorithm takes advantage of the high redun-
dancy in a natural image. In [2], Buades et al. show that
the non-local means algorithm successfully reduces noise
while keeping the sharp edges. However, as mentioned in
[3], the complexity for the non-local means algorithm when
searching for similar patches over the whole image is too
big to realize it in any practical application. Therefore, the
search area must be limited to a particular neighborhood
size [3], [4]. In this project, we will extend this approach to

videos. We will search for similar patches not only in the
current frame but also in the neighboring frames to reduce
the noise even further. We will compare this method with
the one where each frame is denoised separately with a non-
local mean algorithm. We will discuss and go into depth
about these in Section 3.3 and 3.4.

Some known video denoisers are, for example, VBM3D,
3DWTF, and WRSTF. Dabov et al. show in [5] that VBM3D
outperforms 3DWTF and WRSTF. Therefore, in this project,
we will compare our results to VBM3D to see how much
better or worse our simple algorithms are compared to one
of the state-of-the-art video denoisers. We will not detail the
theory behind the VBM3D in this paper. For that, we refer
to [5], and [6].

We will also use two inferior algorithms. The first one
is only averaging the pixel values over different frames.
This approach we call local averaging denoiser in this text.
Furthermore, we will extend this to use Gaussian weights
for the nearby frames, and this we call local Gaussian
denoiser. The goal with these is to show how much better
the sophisticated algorithms such as non-local means or
VBM3D algorithms are compared to these basic approaches.

In the last couple of years, machine learning approaches
have been used for video denoising, as in many other
research areas. One of them is given in [7]. In this article,
the authors show that their algorithm based on deep neural
network gives a slightly better PSNR than VBM3D. Even
though there are slightly better methods than VBM3D, we
will compare our results to VBM3D in this work since
VBM3D is a highly accepted algorithm.

3 THEORY

To see how good the different denoising methods are, we
first separate a video into its frames. Then we add zero-
mean Gaussian noise to each of these frames with differ-
ent standard deviations since we assume that the ground
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truth video does not contain noise. We used three different
videos in this project, each with 150 frames. The reason
we used three different videos was so that a random fac-
tor in one specific video does not happen to effect the
denoising results. Furthermore, we only assume that the
videos contain Gaussian noise and no other noises such as
Poisson noise, quantization noise, etc. After we have added
Gaussian noise, the noisy frames were denoised with the
denoisers mentioned in the following subsections and with
VBM3D. We underline that we did not implement any code
for VBM3D but used the code given in [8]. We could not
find any source code for VBM3D in Python, and instead
we used MATLAB for evaluating the results for VBM3D
while the other denoisers were evaluated with Python.
However, since our project aims to compare how well the
different algorithms work in the sense of quality (PSNR and
visual comparison) and not how fast they are, it will not
make any difference to have codes in different programming
environments.

After each frame in the video had been denoised, we
compared the video to the ground truth video (the video be-
fore noise was added) by calculating the PSNR, see Section
3.5. Finally, the denoised frames were combined to construct
the denoised video for visual comparison.

3.1 Local Averaging Denoiser

The local averaging denoiser is perhaps the most basic
denoising algorithm one can think of. The logic goes that
since a video consists of many images (frames) per second,
the nearby frames will not differ from each other that much.
Therefore, we can average the value at the same pixel
position over nearby frames. Under the assumption that
all of the K frames are aligned with no differences, the
averaged signal to noise ratio (SNR) will be

SNRavg =

√
Kµ

σ
(1)

where each of the K images has an SNR of µ/σ. Here we
see that the SNR increases with increased K and therefore
averaging over nearby frames can increase the SNR, if
the assumption that all of the frames are aligned with no
differences holds.

Let us assume that we average over 3 frames (K = 3).
That is we average the values of pixel (k, j) in frame i − 1,
i, and i + 1 as shown in Figure 1. Mathematically, we can

Fig. 1: Local linear denoiser representation.

Fig. 2: Local Gaussian denoiser representation.

formulate this as

Denoisedt
(k,j) =

1

K

i+⌊K/2⌋∑
t=i−⌊K/2⌋

noisyt
(k,j) (2)

where Denoisedt stands for the t:th denoised frame and
noisyt stands for the t:th noisy frame. This is of course done
for all combinations (k, j).

It is easy to see that this causes a problem on the first and
last frames. For example, assume K = 5 and i = 1. Then we
need to average frames -1, 0, 1, 2, and 3. However, there are
no frames -1 and 0. We take as many frames as possible on
the first and last frames to counteract this problem. In the
example above, this corresponds to only averaging frames
1, 2, and 3 in order to get the denoised frame for i = 1.
Therefore, the edge frames will be denoised a little worse
than the others. However, a few frames at the beginning
and end on a long video with tens of thousands of frames
will not even be noticeable, and therefore, there is no need
to make a complex edge case denoiser.

3.2 Local Gaussian Denoiser

The local Gaussian denoiser is an extension of the local
averaging denoiser. The difference is that instead of aver-
aging the pixel values directly, we attach a Gaussian weight
to the nearby frames (only for those who are going to be
used in the averaging) depending on how far they are from
the frame in focus, see Figure 2. The frames close to frame
i will have bigger weights and frames further away from
the i:th frame will have smaller weights. The mathematical
formulation for this can be given such as

DGt
(k,j) =

1∑
t wt

i+⌊K/2⌋∑
t=i−⌊K/2⌋

wt · noisyt
(k,j) (3)

where DG stands for Denoised Gaussian and

wt =
1

σgauss

√
2π

exp (− (t− i)2

2σ2
gauss

) (4)

Observe that a similar problem arises with this method
near the edge frames. However, we solve it similarly as
mentioned in Section 3.1. We only average over as many
frames as possible on each side of the frame in focus.

The local gaussian denoiser approach is expected to
be better than the local averaging denoiser approach since
closer frames will look more alike while frames further away
in the time domain will look less similar.
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3.3 Non-local Means Denoiser in Spatial Domain

As mentioned in Section 1 non-local means takes advantage
of the high redundancy on a natural image [2]. That is,
in a natural image, there will be many similar regions at
different positions in the same image (see Figure 3). These
similar regions can be combined using non-local means to
reduce the noise while keeping the sharpness of the image.
Observe that similar regions do not need to be close to each
other. They can be far apart, hence the name “non-local”.
For example, in Figure 3 the patch p is very similar to patch
q1 and q2. Therefore, these two should have higher weights
for denoising. On the other hand, q3, which is very different
from p, should have minimal weight (approximately 0).

Let us now take a look at the mathematical formulation
of the non-local means. The information given below is
mainly from [2]. Let us assume that we have a discrete
noisy image v = {v(i)|i ∈ I} where I contains all the pixels
in the image and i is the current pixel. Then the non-local
means denoised pixel i for the noisy image is denoted with
NL(v)(i) and given by

NL(v)(i) =
∑
j∈I

w(i, j)v(j). (5)

where w(i, j) are the weights and depends on the similarity
between the area around pixel i and j. Furthermore, v(j)
is the the noisy pixel j. Observe here that j ∈ I . That is we
compare i with all the other pixels in the image. The weights
are given by

w(i, j) =
1

Z(i)
exp (−

||v(Ni)− v(Nj)||22,a
h2

) (6)

where Ni is a neighborhood subset of I . This is to prevent
the high complexity of going through all the pixels in the
image as mentioned in [3]. By limiting ourselves to a subset
of neighborhoods the complexity decreases significantly.
Furthermore, h controls the decay of the weights and Z(i)
is

Z(i) =
∑
j

exp (−
||v(Ni)− v(Nj)||22,a

h2
) (7)

Fig. 3: Non-local means representation. Image taken from
[2].

Fig. 4: Representation of non-local means in spatial and
temporal domain.

In the non-local means with only spatial denoiser, we use
this image denoising on each frame separately. That is, there
is no inter-frame information used for denoising. In Section
3.4 we will discuss how to extend this to use inter-frame
information.

For implementing the non-local means denoisers, in
this project, we used the denoise_nl_means() func-
tion from the skimage.restoration library in Python
[9]. Even though we could implement this function
ourselves, we abstained since the function from the
skimage.restoration package works far faster and is
more reliable than any implementation we could come up
with in the given time constraint.

3.4 Non-local Means Denoiser in Spatial and Temporal
Domain
The non-local means denoiser in the spatial and temporal
domain works similarly to the non-local means denoiser
in only the spatial domain. The main difference is that it
searches for similar patches not only in the same frame but
in other frames as well, see Figure 4. Due to frames close in
time often being very similar, the number of similar patches
increases by searching in a neighborhood that spans over
the temporal domain as well.

The weights w(i, j) are determined in the exact same
way as in Section 3.3, Equation 6 and 7.

Again, let v denote a noisy frame, and i denote the
current pixel. Also let J contain all pixels in K consecutive
frames, centered around the current frame. The denoised
pixel i of the noisy image is then given as

NLst(v)(i) =
∑
j∈J

w(i, j)v(j), (8)

where NLst denotes the denoised frame using the non-local
means with search neighborhood spanning over both the
spatial and the temporal domain.

As for the local averaging denoiser and the local gaus-
sian denoiser, the first few and the last few frames will pose
an issue since the neighborhood in the temporal domain will
span outside of the video. This is handled in the exact same
way for this methods as for the previous methods, i.e. only
using as many frames as possible near the edges.

Another difference from the non-local means in only
the spatial domain is that we could not use the func-
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tion from skimage.restoration directly in the non-
local means in both the temporal and the spatial domain.
Instead we needed to separate each color channel, denoise
each color channel separately using a search area spanning
over multiple frames, and then fuse the color channels. By
doing it this way, we could still use the function from the
skimage.restoration package.

3.5 Peak Signal to Noise Ratio

In this project we mainly use the peak signal to noise ratio
(PSNR) to quantitatively compare the denoised videos. The
PSNR per frame is given by [10]

PSNRframe = 10 log10(
max I2GT

MSE
) (9)

where

MSE =
1

3mn

3∑
c=1

m∑
i=1

n∑
j=1

[IGT (i, j, c)− Id(i, j, c)]
2. (10)

Here Id denotes the denoised image, IGT denotes the
ground truth (original) image. Observe that we have three
summations. These summations from left to right are be-
cause we have three color channels, m pixels vertically
and n pixels horizontally. I.e., we compare each pixel in
each color channel with the original value and sum their
squared difference. We want this summation to be as small
as possible. Because when MSE is small, the PSNR is large,
and high PSNR is correlated with high similarity. Moreover,
the PSNR for the entire video is calculated as the mean of
the PSNRs for each frame.

4 RESULTS, ANALYSIS AND EVALUATION

Each of our implemented methods is evaluated using differ-
ent parameters in the following section. Furthermore, they
have been compared to each other and the VBM3D method.
All results presented here can be reconstructed by using the
code given in [11].

4.1 Comparing parameters

4.1.1 Local Averaging Denoiser

The main parameter that can be changed in the local averag-
ing denoiser is the number of frames to average. The results
of changing this parameter was tested by averaging 3, 5, or
7 frames for three different noise levels, σ = 0.05, σ = 0.1
and σ = 0.15 on three different videos. The results are listed
in Table 1. The best result for each noise level σ is shown in
green (this will be used in the following tables as well). To
be able to visually compare the results, one example frame
can be seen in Figure 5.

From both the PSNRs and the example frame it is clear
that the averaging algorithm does not perform very well in
improving the quality of the video. Some noise is removed,
but the consecutive frames are too different (contrary to
thought), which makes the artifacts from movement in the
scene very large.

(a) Noisy frame (b) K = 3

(c) K = 5 (d) K = 7

Fig. 5: An example frame from average denoising, using a noise
level of σ = 0.1.

4.1.2 Local Gaussian Denoiser

For the Gaussian denoiser, two parameters can be changed;
the number of frames included in the averaging and the
standard deviation of the Gaussian kernel. The effects of
these parameters were tested in the same way as the number
of frames for the averaging algorithm, using three differ-
ent noise levels and three different videos. The Gaussian
denoiser was first tested by including five frames in the
averaging for three different standard deviations of the
Gaussian kernel, namely σGauss = 0.5, 1.0, and 5.0. The
results from these tests are presented in Table 2. It was then
tested with 3, 5, or 7 frames included in the averaging, with
the standard deviation of the Gaussian distribution fixed at
1.0. The results are presented in Table 3. An example frame
for the local Gaussian denoiser is presented in Figure 6.

The results show that for higher noise levels, it is ben-
eficial to increase the standard deviation of the Gaussian
weights and increase the number of frames included in
the averaging. However, it is more beneficial for lower
noise levels to have a small standard deviation and a few
frames included in the averaging. The reason for this is that
increasing the number of frames or the standard deviation of
the Gaussian weights reduces noise more but also increases

TABLE 1: PSNRs of the average denoising method averag-
ing different number of frames.

# of frames being averaged 3 5 7

football
σ= 0.05 22.46 dB 21.26 dB 20.59 dB
σ= 0.1 20.83 dB 20.38 dB 20.01 dB
σ= 0.15 19.16 dB 19.34 dB 19.25 dB

crew
σ= 0.05 27.27 dB 26.65 dB 25.86 dB
σ= 0.1 23.61 dB 24.32 dB 24.29 dB
σ= 0.15 20.95 dB 22.23 dB 22.66 dB

city
σ= 0.05 26.03 dB 24.92 dB 24.15 dB
σ= 0.1 22.98 dB 23.24 dB 23.06 dB
σ= 0.15 20.41 dB 21.42 dB 21.73 dB
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(a) Noisy frame (b) K = 5, σGauss = 0.5

(c) K = 3, σGauss = 1 (d) K = 5, σGauss = 1

Fig. 6: An example frame from average denoising with Gaus-
sian distributed weights, using a noise level of σ = 0.1 and
parameters specified below each image.

the motion artifacts in the image, which is beneficial for high
noise levels but not for smaller noise levels.

4.1.3 Non-local Means Denoiser in Spatial Domain

The non-local means method where the search area only
contains patches within the same frame was tested using
different patch sizes and different patch distances. The
denoising method was first tested with a fixed patch size
of 5 but different patch distances, see Table 4. The method
was also tested for a fixed patch distance of 5, but for
different patch sizes, see Table 5. An example frame with
some different parameters can be seen in Figure 7.

From the PSNRs, it is possible to tell that increasing
the patch distance improves the PSNRs for the videos with
high noise levels but decreases the PSNR for low noise
levels. Increasing the patch distance should remove more
noise, but also blur the video more than using smaller patch
distances which explains why using a greater patch distance
is beneficial for videos with a lot of noise but less beneficial
for videos with less noise.

TABLE 2: PSNR of averaging with Gaussian distributed
weights using different standard deviations for the Gaussian
distribution

# of frames 5 5 5
Std of Gaussian distribution 0.5 1.0 5.0

football
σ= 0.05 26.73 dB 23.50 dB 21.36 dB
σ= 0.1 21.74 dB 21.72 dB 20.46 dB
σ= 0.15 18.61 dB 19.94 dB 19.40 dB

crew
σ= 0.05 27.63 dB 28.08 dB 26.75 dB
σ= 0.1 22.01 dB 24.33 dB 24.38 dB
σ= 0.15 18.80 dB 21.62 dB 22.26 dB

city
σ= 0.05 27.49 dB 26.87 dB 25.03 dB
σ= 0.1 21.81 dB 23.73 dB 23.31 dB
σ= 0.15 18.43 dB 21.11 dB 21.47 dB

TABLE 3: PSNR of averaging with Gaussian distributed
weights including different number of frames in the aver-
aging.

# of frames 3 5 7
Std of Gaussian distribution 1.0 1.0 1.0

football
σ= 0.05 23.77 dB 23.50 dB 23.48 dB
σ= 0.1 21.61 dB 21.71 dB 21.73 dB
σ= 0.15 19.59 dB 19.94 dB 19.97 dB

crew
σ= 0.05 27.94 dB 28.08 dB 28.09 dB
σ= 0.1 23.76 dB 24.33 dB 24.37 dB
σ= 0.15 20.91 dB 21.62 dB 21.68 dB

city
σ= 0.05 26.95 dB 26.89 dB 26.86 dB
σ= 0.1 23.28 dB 23.73 dB 23.76 dB
σ= 0.15 20.45 dB 21.10 dB 21.16 dB

TABLE 4: PSNRs of spatial non-local means denoiser using
different patch distances.

Patch size 5 5 5
Patch distance 3 5 7

football
σ= 0.05 31.83 dB 31.01 dB 30.41 dB
σ= 0.1 25.76 dB 27.52 dB 28.19 dB
σ= 0.15 17.59 dB 18.13 dB 18.66 dB

crew
σ= 0.05 32.13 dB 31.03 dB 30.28 dB
σ= 0.1 26.09 dB 28.01 dB 28.71 dB
σ= 0.15 17.69 dB 18.29 dB 18.85 dB

city
σ= 0.05 29.44 dB 28.35 dB 27.68 dB
σ= 0.1 24.30 dB 25.89 dB 26.60 dB
σ= 0.15 16.86 dB 17.12 dB 17.40 dB

The PSNRs also shows that the optimal patch size for
σ = 0.05 is at 5, but for the higher noise levels the optimal
patch size is 3. With a larger patch size, the neighborhood
around one patch has to be more similar for the weights
to be big. If there are enough similar patches in the search
area this should improve the denoising, but if there are
not enough similar patches, it will instead make the image
blurry because a lot of patches will have a similar weight.

4.1.4 Non-local Means Denoiser in Spatial and Temporal
Domain

Due to the non-local means in the spatial and temporal
domain being very computational inefficient and taking a
very long time to run, it was only tested for one noise
level and only changing the neighborhood in the temporal
domain. The other parameters possible to change are the
same as for the non-local means in the spatial domain and
the results of changing these parameters are thus expected
to have a similar result. The results from the tests for the
non-local means algorithm in the spatial and the temporal

TABLE 5: PSNRs of spatial non-local means denoiser using
different patch sizes.

Patch size 3 5 7
Patch distance 5 5 5

football
σ= 0.05 30.33 dB 31.01 dB 30.92 dB
σ= 0.1 28.14 dB 27.52 dB 26.37 dB
σ= 0.15 21.47 dB 18.13 dB 17.17 dB

crew
σ= 0.05 30.60 dB 31.03 dB 30.90 dB
σ= 0.1 28.60 dB 28.01 dB 26.76 dB
σ= 0.15 21.76 dB 18.29 dB 17.23 dB

city
σ= 0.05 28.29 dB 28.35 dB 28.16 dB
σ= 0.1 26.97 dB 25.89 dB 24.48 dB
σ= 0.15 20.32 dB 17.12 dB 16.61 dB
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(a) Noisy frame (b) PD = 3, PS = 5

(c) PD = 5, PS = 3 (d) PD = 5, PD = 5

Fig. 7: An example frame from non-local means denoising in
the spatial domain, using a noise level of σ = 0.1.

TABLE 6: PSNRs of spatial and temporal non-local means
denoiser using different neighborhood sizes in the temporal
domain.

Neighborhood size 3 5 7
football σ= 0.1 27.17 dB 26.55 dB 25.81 dB
crew σ= 0.1 28.28 dB 28.04 dB 27.80 dB
city σ= 0.1 26.04 dB 25.90 dB 25.89 dB

domain are presented in Table 6 and an example frame can
be seen in Figure 8.

In this case, increasing the neighborhood size decreases
the PSNR. As for the patch distances for the non-local means
in only the spatial domain, increasing the neighborhood in
the temporal domain reduces more noise, but also blurs the
video more, which is a possible explanation to the decrease
in PSNR when the neighborhood gets larger.

4.2 Comparing Methods

To compare the different methods to each other, each
method’s highest PSNR for each video and each level of
noise are summarized in Table 7. In the table, results using
the Video BM3D method for denoising the videos have also
been included for comparison.

In general, the two averaging algorithms show a sim-
ilar result in terms of PSNR. The averaging method with
weights performs better at low noise levels, but the aver-
aging method without weights performs better for two out
of the three tested videos for higher noise levels. However,
both of the methods perform poorly and introduce many
movement artifacts. The two variants of the non-local means
method perform a lot better than the averaging methods.
A lot of the noise is removed without introducing artifacts
from the movements. The major issue with these methods is
that some areas become blurry, e.g., the grass in the football
video. This happens to a larger extent for the non-local

(a) Noisy frame (b) TN = 3

(c) TN = 5 (d) TN = 7

Fig. 8: An example frame from non-local means denoising in
the spatial and temporal domain, using a noise level of σ = 0.1.

means in both the spatial and the temporal domain than for
the non-local means in only the spatial domain. Even though
the non-local means methods perform a lot better than the
averaging algorithms, they still can not compete with the
state-of-the-art VBM3D method, which gives a much higher
PSNR for the videos.

5 DISCUSSION AND CONCLUSION

As expected the averaging methods did not perform as well
as the non-local means methods. This was true for images
as well, and was not surprising. One thing that did surprise
us about the result is that the non-local means in the spatial
domain performed better than the non-local means in the
temporal and the spatial domain. However, by looking at
the example frames in Figure 7 and Figure 8 it is possible
to see that the background after the non-local means in the
spatial and temporal domain is more blurry than for the
non-local means in only the spatial domain, which is one
explanation for the lower PSNRs. Another aspect is that
the parameters for the non-local means in the temporal and
spatial domain might be worse than the parameters for the
non-local means in the spatial domain since the first one was
not tested with as many different sets of parameters.

5.1 Limitations

One limitation of this study is the small number of tests of
the non-local means algorithm, which searches for patches
in both temporal and the spatial domain. To improve the
study results, the method should be tested with other pa-
rameters and other noise levels, but due to the computa-
tional complexity, long-running times, and the project’s time
limit, this was not possible in our case. So, the fundamental
limitation is that the non-local means in the spatial and
temporal domain is too slow.
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TABLE 7: The PSNRs for all of the tested methods, using the optimal parameters for each video and noise level.

Averaging Gaussian NLM spatial NLM spatial
and temporal VBM3D

football
σ = 0.05 22.46 dB 26.73 dB 31.83 dB - 35.24 dB
σ = 0.1 20.83 dB 21.74 dB 28.19 dB 27.17 dB 31.25 dB
σ = 0.15 19.34 dB 19.97 dB 21.47 dB - 28.89 dB

crew
σ = 0.05 27.27 dB 28.09 dB 32.13 dB - 35.80 dB
σ = 0.1 24.32 dB 24.38 dB 28.71 dB 28.28 dB 32.29 dB
σ = 0.15 22.66 dB 22.26 dB 21.76 dB - 30.23 dB

city
σ = 0.05 26.03 dB 27.49 dB 29.44 dB - 34.87 dB
σ = 0.1 23.24 dB 23.76 dB 26.97 dB 26.04 dB 31.20 dB
σ = 0.15 21.73 dB 21.47 dB 20.32 dB - 29.05 dB

5.2 Future work
As mentioned a couple of times already, our approach is
computationally heavy. So one improvement to our algo-
rithm could be to make it more efficient so it can run at least
as fast as the VBM3D algorithm, which is both faster and
gives better results.

Another thing one can look into is to test the non-local
means in the spatial and temporal domain on videos with a
higher frame rate. This should improve the methods that use
information from multiple frames since successive frames
would be more similar at a higher frame rate.

5.3 Conclusion
Since the VBM3D method performs so much better than
the less sophisticated algorithms we implemented in this
project (and even with suggested improvements in Section
5.2 made to the proposed methods) it is not likely that
the methods will be able to compare to the VBM3D, the
conclusion is that it does not seem promising to improve
the less sophisticated methods used in this project further.
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