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Abstract—Real world scenes have a dynamic range much
larger than today’s imaging sensors, leading to frequent
over/under exposure of different image portions. Object detection
under such extreme lighting conditions is easily confounded,
which challenges existing object detection pipelines [1]. The
conventional cameras’ limited dynamic range stems from the
global shutter and analog to digital conversion at the sensor
plane, which could be thought of as a data transfer bottleneck.
We can therefore formulate the problem of object detection on
real-world scenes as an encoder-bottleneck-decoder scheme. Pro-
grammable photosensors – which are sensors that can perform
some computation in the sensor plane itself – lend themselves as
a possible solution to this problem. By developing a differentiable
model for these sensors, we aim to integrate them into a pipeline
that will allow us to perform end-to-end optimization of both
hardware and software in unison. In this publication, we aim
to introduce a task-specific data capture pipeline where both the
hardware (focal-plane sensor-processors) and software (neural
networks) are jointly and specifically optimized for one task - in
this case, object detection.

I. INTRODUCTION/MOTIVATION

In recent years, we have witnessed the rapid acceleration
of Machine Learning, producing endless novel applications.
One of the more significant advancement has been in object
detection/segmentation - where current state of the art (SOTA)
neural algorithms are reaching unprecedented accuracy, even
surpassing their human counterparts. Such advancements are
extremely important for a bevy of exciting applications such as
autonomous driving, personal robotics, and even in radiology.
Algorithms such as YOLO [7], Mask R-CNN [9], RetinaNet
[11] and others leverage deep neural architectures with sophis-
ticated layers and losses in order to achieve state-of-the-art
results. However, a key component of their success is owed
to the quality of the data they are trained on. Most of them
rely on datasets, such as MS-COCO [8], which contains over
1.5 million annotated object instances. However, these datasets
are composed of LDR images, which cannot fully depict real-
world scenes. Therefore, a key component of the success of
such pipelines is the image capture itself.

Most modern digital cameras utilize the same optical design
as their analog predecessors - where optics are used to create
an in-focus image of the desired scene on the photosensor
array within, and the array is exposed for a fixed (and constant)
time interval. During the exposure, the sensors integrate the
incoming luminescence, ultimately reporting the total accu-
mulated intensity measured at each position. However, due
to the limited range of intensity values these sensors are
sensitive to, only a range of incoming luminescence can be
accurately reported, with some values getting saturated in
bright regions while others measure values below the sensor
SNR (under-exposure). These effects are very detrimental to

the aforementioned SOTA object detection algorithms and
their deployment in real-world applications.

Different computational photography approaches have man-
aged to capture High Dynamic Range (HDR) images - im-
ages who’s dynamic range more closely approximates that
of the real-world scenes - however each time there was an
inherit trade-off (see related works). All of these methods are
specifically optimized for visual perception, rather than any
single down-stream task, such as object detection. It is fair to
assume that for object detection segmentation, different details
affect the accuracy of the approach. For example, edges are
particularly important for object detection and segmentation,
and therefore it would make sense to want to preserve this
information more accurately. A new trend in Computation
imaging attempts to integrate hardware and software together
into a singular ”neural network” utilizing differential system
modeling and end-to-end optimization [4] [5] [6]. In this
approach, the pipeline can be conceptualized as a neural auto-
encoder, with the hardware essentially encoding the scene,
followed by a second neural network that decodes the measure-
ments. Herein, we purpose task-specific optimization using
focal-plane sensor processors, allowing the development of an
image acquisition pipeline optimized specifically for object
detection. Here, the ”camera” no longer will capture ”images”
in the traditional sense, but rather measurements containing
the most pertinent information for object detection.

II. RELATED WORKS

HDR Imaging: The conventional camera’s limited dynamic
range has been extended using a variety of approaches. For
example several low dynamic range images can be captured
in quick succession before being combined together to create
a single HDR image [12] [13]. However, this approach tends
to quickly degrade in dynamic scenes, where the motion
of objects cause ”ghosting artifacts”. Even more recently,
several single-capture methods have been proposed [14]. Such
approaches use a variety of ways (ND filter, SLMs, and
more) to effectively have a spatially-distributed exposure time.
A post-capture HDR image reconstruction step is therefore
required for such approaches, and there is an inherit resolution
tradeoff. Furthermore, such systems tend to be expensive and
require the sensor to be permanently altered, further hindering
development and prototyping. Finally, there are methods that
attempt to compress the dynamic range of the signal before
the bottleneck [2] [3]. Common among these approaches is
the encoding of the high dynamic range information before
the bottleneck (sensor dynamic range A2D), and utilizing
more complex post-processing scenes to ”decode” the cap-
tured image into an HDR image acquisition. However, these



Fig. 1. Block diagram of the proposed method. An incident scene is focused on the focal-plane sensor-processors, where it is encoded ”physical encoding”
before being passed through the bottleneck to the digital decoder (NN). Finally, the decoded image is passed to a frozen, pre-trained NN and the mAP loss
is back-propagated to the relevant modules.

methods are rarely stable, and require extensive reconstruction
schemes, limiting their frame rate and practicality.

Tone Mapping: Tone Mapping Operators (TMOs) take
HDR images and map them into visually-Representative LDR
images. Tone-mapping methods fall into two categories: global
tone mappers and local tone mappers. Global tone mappers
apply the same compression function to all pixels in the
image (e.g. gamma correction). Meanwhile, local tone map-
pers apply pixel tone-mapping based on their neighboring
pixels. Although global tone mappers are computationally
more efficient, they do not preserve enough contrast, resulting
in a washed-out image. Local tone mappers, on the other
hand, are able to preserve contrast ratios while also adhering
to regional details. An example of such local TMOs is the
Reinhard tonemapper [10].

End-to-End Optimization of camera hardware and soft-
ware: While the co-design of hardware and software lies at the
roots of computational imaging, only recently have there been
attempts to conjointly learn both the software and hardware
in unison [4] [5] [6]. New tools, such as differential modeling
of hardware and more advanced Neural Network tools have
enabled the conceptualization of the camera as a neural auto
encoder see figure 1. Here, the hardware essentially ”encodes”
the incident scene before passing the measurements through
the bottleneck to the neural decoder. In this research, we aim to
append this traditional framework with a pre-trained YOLOv5s
network, and use it to generate the ”object detection” loss.

III. METHODS/PROJECT OVERVIEW

In this project, I will attempt to implement different
encoder-decoder pairs (see table I), along with a configurable
”bottleneck” quantization/saturation unit (utilizing Surrogate
gradients) and perform end-to-end optimization on:

1. Identity (output = input, L1 loss)
2. Reinhard (output = Reinhard(input), L1 loss)
3. Object Detection using YOLOv5s [7]
This stepped approach will allow better initialization of

our model before heading to the more complex object de-
tection loss. For object detection, I will essentially append
our model with a pre-trained neural network - YOLOv5s [7].

YOLOv5s is a state-of-the-art object detection model that
takes in LDR images and outputs bounding boxes predictions
and object classification probabilities. We will use the mean
average precision (mAP), which is the average over multiple
Intersection over Union (IoU) values for correct bounding
box predictions as the loss for training. During training, we
will freeze the YOLOv5s weights, thus only updating the
weights of our model (encoder -decoder, bold in table I).
Ultimately, our model will generate an LDR image given
an HDR image, optimized especially for object detection. In
contrast to most previously reported works, we won’t attempt
to perform tone-mapping to produce visually coherent images,
but instead, produce an image optimized for object detection.
After training, for inference, an HDR image is passed to
our model which outputs an image to YOLOv5s for object
detection. Our end-to-end approach can be seen in figure 1.

IV. TIMELINE AND INTERMEDIATE GOALS

Week 1: I will attempt to implement 1-3 in table I without
quantization.

Week 2: Then, I will introduce quantization to S1.
Week 3: Once the learned decoder approaches have been

realized, I will move on to the dual-learned encoder-decoders
(rows 4-6), without quantization.

Week 4: I will introduce quantization to S3.
Week 5: I will develop a differentable model for the focal

plane sensor-processors, implement it, and perform end-to-end
optimization with/without quantization.

TABLE I
DIFFERENT ENCODER-DECODER PAIRS, BOLD=LEARNED
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