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Motivation Gradient Estimation

« Convolutional Neural Networks (CNNs) are widely used for imaging and computer
vision tasks. However, the state-of-the-art networks require ample memory and
compute power.

Recently, the emergence of new sensors with increased circuitry per pixel allows for on
focal plane computation. But, with limited memory capacity, such large CNNs cannot
run on the sensor.

We want to understand how to train lightweight, binarized networks for on sensor
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XN O R t . I N t CI - .I: . t U - B - C I t I Gradient Estimator/Model Weights Convolutional layers parameter size Precision top-1 (without bias) Meﬂﬁ?&iﬁfﬁé':ﬁfﬁﬂﬂ?;’;’?ﬂ= 51 200 bits
) n e . m ag e e aS S I I C a I O n S I n g I n ary O n VO u I O n a Precision - To the base model shown above, \'Ne could add 98 more binaryConv2d(in=6, out=6, kernel=5) layers (each is 900bits)

Neu ral NetWO rkS None (Full Precision) / Base Model (BM) 32 bit 91,200 bits 75.22 for the same memory footprint
. Representation of bits as -1,1 Naive: Quantized Weights at the End / BM 1 bit 2850 bits 11.86 Model (changes)
« Convolutions become XNOR and bit-count operations SElNUCES e SRl Lot 2850 bits 5998 STE (+50 conv2d layers) 47850 bits 10.00
Second Order Approximation / BM 1 bit 2850 bits 9.996
STE (+10 conv2d layers) 11850 bits 9.986
] . . Tanh estimator / BM 1 bit 2850 bits 59.44
Forward and Backward Information Retention for Accurate Binary T —— bt 2850 bits s 10 STE (+1convad layer) 3750 bits 32.72
Neural Networks e — 1 bit 2850 bits 56.64 STE (kernel size=3) 1026 bits 54.17

(Reported percentages are the best trained with parameter tuning. IR-Net, BiRealNet ResNet50 were also trained with 87.6% and 83.9% accuracy but they had very specific architectures
and training procedures. This table only has comparable architectures to show the effect of the gradient estimator. )

Discussion:

« Many of these gradient approximations are comparable, but there is still a gap between the full precision and binarized network performances
« Binary filters may not be able to adequately capture features

« Without going to better architectures, increasing the depth of the network does not necessarily help. Training gets more challenging as depth

R ef e r e N C e S Increases so hyper-parameter tuning becomes really important.
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