A Survey of Gradient Estimators for **Binary Neural Networks for Image Classification**

- vision tasks. However, the state-of-the-art networks require ample memory and compute power.
- run on the sensor.
- gradient estimation is a key problem.

XNOR-net: ImageNet Classification Using Binary Convolutional **Neural Networks**

- Representation of bits as -1,1
- Convolutions become XNOR and bit-count operations

Forward and Backward Information Retention for Accurate Binary **Neural Networks**

Slowly quantize with training

[1] Rastegari, Ordonez, Redmon, and Farhadi, XNOR-net: ImageNet Classification Using Binary Convolutional Neural Networks, ECCV, 2016 [2] Liu, Wu, Luo, Yang, Liu, and Cheng, Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational

Capability and Advanced Training Algorithm, ECCV, 2018

[3] Qin, Gong, Liu, Wei, Yu, and Song, Forward and Backward Information Retention for Highly Accurate Binary Neural Networks, CVPR, 2020

Haley So (haleyso@stanford.edu)

Stanford University

Gradient Estimator/Model	Weights Precision	Convolutional layers parameter size	Precision top-1 (without bias)	 Memory Footprint Comparison: 2 full precision conv2d layers = 91,200 bits To the base model shown above, we could add 98 more binaryConv2d(in=6, out=6, kernel=5) layers (each is 900bits) for the same memory footprint 		
None (Full Precision) / Base Model (BM)	32 bit	91,200 bits	75.22			
Naïve: Quantized Weights at the End / BM	1 bit	2850 bits	11.86	Model (changes)	Conv2d Parameters	Precision top-1
Straight Through Estimator (STE) / BM	1 bit	2850 bits	59.98	STE (+50 conv2d lavers)	47850 bits	10.00
Second Order Approximation / BM	1 bit	2850 bits	9.996		11050 bits	0.090
Tanh estimator / BM	1 bit	2850 bits	59.44	STE (+10 conv2d layers)	11850 DIts	9.986
2/coshx estimator / BM	1 bit	2850 bits	58.10	STE (+1 conv2d layer)	3750 bits	32.72
Gumbel Softmax /BM	1 bit	2850 bits	56.64	STE (kernel size=3)	1026 bits	54.17

(Reported percentages are the best trained with parameter tuning. IR-Net, BiRealNet ResNet50 were also trained with 87.6% and 83.9% accuracy but they had very specific architectures and training procedures. This table only has comparable architectures to show the effect of the gradient estimator.

Discussion:

- Many of these gradient approximations are comparable, but there is still a gap between the full precision and binarized network performances
- Binary filters may not be able to adequately capture features
- Without going to better architectures, increasing the depth of the network does not necessarily help. Training gets more challenging as depth increases so hyper-parameter tuning becomes really important.

Future Directions:

- Instead of the extreme (binarization), we can try highly quantized (eg. 8-bits)
- Create better architectures in tandem with gradient estimation methods

→ class B @st def	<pre>inarizeFunction(Function): aticmethod forward(ctx, input): ctx.save_for_backward(input) out = torch.sign(input) return out</pre>
@st	aticmethod
def	<pre>backward(ctx, grad_output): input, = ctx.saved_tensors grad_input = gradientEstimation(input) return grad_output * grad_input</pre>
x^{2}	$\frac{\delta}{\delta x} sign(x) \approx \left(\frac{2}{coshx}\right)^2 \int_{2}^{2} \int_{2}^{2} gumbel \ softmax$