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• Reconstruct	image	x	from	noisy	observation	y	affected	by	noise	
distribution					with	parameters				:	

• Deep	learning	methods	exist	for	denoising	images,	but	such	methods	
require	large	amounts	of	synthetic	noisy	data	and	do	not	generalize	
well	to	unseen	noise	distributions	or	real	noisy	images	

• We	propose	the	use	of	a	meta-learning	algorithm	to	learn	how	to	
perform	few-shot	image	denoising	with	various	noise	distributions	

• At	test	time	our	model	has	the	ability	to	denoise	synthetic	noisy	
images	of	unseen	distributions	and	levels	and	also	to	adapt	to	
denoising	of	a	small	set	of	real	noisy	images

• Non-learning	methods:	Bilateral	Filtering	(BF),	Non-Local	Means	
(NLM),	and	Block-Matching	and	3-D	Filtering	(BM3D)	
• Pros:	Works	independently	of	noise	distribution	and	level	
• Cons:	Can	cause	blurring	artifacts,	slow	run	time	

• Learned	Methods:	DnCNN-B	from	Denoising	Convolutional	Neural	
Networks	[1]		
• Pros:	DnCNN-B	handles	Gaussian	denoising	on	unknown	levels	
• Cons:	Needs	lot	of	data	to	train,	only	suited	for	Gaussian	noise	

• Model	Agnostic	Meta-Learning	(MAML)	[2]:	Finds	a	set	of	network	
initialization	parameters	that	allow	the	model	to	adapt	to	any	
unseen	task	quickly	with	just	a	few	steps	of	fine-tuning
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BF,	PSNR:	22.8 BM3D,	PSNR:	24.59GT MAML,	PSNR:	24.42 NLM,	PSNR:	22.95Noise,	PSNR:	13.79

GT Noise,	PSNR:	16.72 MAML,	PSNR:	27.42 NLM,	PSNR:	25.82 BF,	PSNR:	24.95 BM3D,	PSNR:	27.11
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