Model-Agnostic Meta-Learning for Image Denoising Jessica Tawade, Rahul Shiv Stanford University

Motivation

• Reconstruct image x from noisy observation y affected by noise distribution \mathbb{N} with parameters ϵ :

$$y = \mathbb{N}_{\epsilon}(x)$$

- Deep learning methods exist for denoising images, but such methods require large amounts of synthetic noisy data and do not generalize well to unseen noise distributions or real noisy images
- We propose the use of a **meta-learning algorithm** to learn how to perform few-shot image denoising with various noise distributions
- At test time our model has the ability to denoise synthetic noisy images of unseen distributions and levels and also to adapt to denoising of a small set of real noisy images

Related Work

- Non-learning methods: Bilateral Filtering (BF), Non-Local Means (NLM), and Block-Matching and 3-D Filtering (BM3D)
 - Pros: Works independently of noise distribution and level
 - Cons: Can cause blurring artifacts, slow run time
- Learned Methods: DnCNN-B from Denoising Convolutional Neural Networks [1]
 - Pros: DnCNN-B handles Gaussian denoising on unknown levels
 - Cons: Needs lot of data to train, only suited for Gaussian noise
- Model Agnostic Meta-Learning (MAML) [2]: Finds a set of network initialization parameters that allow the model to adapt to any unseen task quickly with just a few steps of fine-tuning

References

[1] Zhang et. al., Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, IEEE Transactions on Image Processing, 2016

[2] Finn et. al., Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML, 2017

[3] Arbelaez et al., Contour Detection and Hierarchical Image Segmentation, IEEE TPAMI, Vol. 33, No. 5, pp. 898-916, May 2011.

[4] Casas et al., "Few-Shot Meta-Denoising". In: CoRR abs/1908.00111, 2019

	PSNR				
Noise Parameters	Noisy	BF	NLM	BM3D	MAML, 10-shot
Gaussian, $\sigma = 0.1$	22.48	29.85	29.30	33.17	30.65
Gaussian, $\sigma = 0.15$	18.84	28.09	29.08	30.89	29.32
Gaussian, $\sigma = 0.3$	13.74	23.45	24.25	25.71	24.60
Poisson, $\beta = 5$	13.55	23.10	24.39	25.26	24.82
Poisson, $\beta = 7$	14.63	24.32	25.47	26.55	26.26
Poisson, $\beta = 15$	17.54	26.97	23.84	29.42	28.81

Experimental Results